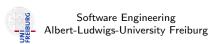
Decision Procedures

Jochen Hoenicke



Winter Term 2015/16

Foundations: Propositional Logic

```
Atom
            truth symbols \top ("true") and \bot ("false")
            propositional variables P, Q, R, P_1, Q_1, R_1, \cdots
Literal
            atom \alpha or its negation \neg \alpha
Formula
            literal or application of a
            logical connective to formulae F, F_1, F_2
             \neg F "not"
                                                 (negation)
             (F_1 \wedge F_2) "and"
                                                (conjunction)
             (F_1 \vee F_2) "or"
                                                (disjunction)
             (F_1 \rightarrow F_2) "implies" (implication)
             (F_1 \leftrightarrow F_2) "if and only if" (iff)
```

Example: Syntax


```
formula F: ((P \land Q) \rightarrow (\top \lor \neg Q)) atoms: P, Q, \top literal: \neg Q subformulas: (P \land Q), (\top \lor \neg Q)
```

Parentheses can be omitted: $F: P \land Q \rightarrow \top \lor \neg Q$

- ¬ binds stronger than
- ∧ binds stronger than
- V binds stronger than
- \bullet \rightarrow , \leftrightarrow .

Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1 where 0 corresponds to value false

1 true

Interpretation $I: \{P \mapsto 1, Q \mapsto 0, \cdots\}$

Evaluation of logical operators:

F_1	$ F_2 $	$\neg F_1$	$F_1 \wedge F_2$	$F_1 \vee F_2$	$F_1 \rightarrow F_2$	$F_1 \leftrightarrow F_2$
0	0	1	0	0	1	1
0	1		0	1	1	0
1	0	0	0	1	0	0
1	1		1	1	1	1

Example: Semantics

$$F: P \land Q \rightarrow P \lor \neg Q$$
$$I: \{P \mapsto 1, Q \mapsto 0\}$$

Р	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1

$$1 = \mathsf{true} \qquad \qquad 0 = \mathsf{false}$$

F evaluates to true under I

Inductive Definition of PL's Semantics


```
I \models F if F evaluates to 1 / \text{true} under I \not\models F 0 / \text{false}
```

Base Case:

$$I \models \top$$

 $I \not\models \bot$
 $I \models P \text{ iff } I[P] = 1$
 $I \not\models P \text{ iff } I[P] = 0$

Inductive Case:

$$\begin{array}{ll} I \models \neg F & \text{iff } I \not\models F \\ I \models F_1 \land F_2 & \text{iff } I \models F_1 \text{ and } I \models F_2 \\ I \models F_1 \lor F_2 & \text{iff } I \models F_1 \text{ or } I \models F_2 \\ I \models F_1 \to F_2 & \text{iff, if } I \models F_1 \text{ then } I \models F_2 \\ I \models F_1 \leftrightarrow F_2 & \text{iff, } I \models F_1 \text{ and } I \models F_2, \\ & \text{or } I \not\models F_1 \text{ and } I \not\models F_2 \end{array}$$

$$F \,:\, P \,\wedge\, Q \,\rightarrow\, P \,\vee\, \neg Q$$

$$I \,:\, \{P \ \mapsto \ 1, \ Q \ \mapsto \ 0\}$$

1.
$$I \models P$$
 since $I[P] = 1$
2. $I \not\models Q$ since $I[Q] = 0$
3. $I \models \neg Q$ by 2, \neg
4. $I \not\models P \land Q$ by 2, \land
5. $I \models P \lor \neg Q$ by 1, \lor
6. $I \models F$ by 4, \rightarrow Why?

Thus, *F* is true under *I*.

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation *I* such that $I \models F$.

Definition (Validity)

F is valid iff for all interpretations *I*, $I \models F$.

Note

F is valid iff $\neg F$ is unsatisfiable

Proof.

F is valid iff $\forall I: I \models F$ iff $\neg \exists I: I \not\models F$ iff $\neg F$ is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.

Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

- $F_1: P \wedge Q$ satisfiable, not valid
- F_2 : $\neg(P \land Q)$ satisfiable, not valid
- $F_3: P \vee \neg P$ satisfiable, valid
- F_4 : $\neg(P \lor \neg P)$ unsatisfiable, not valid
- $F_5: (P \rightarrow Q) \land (P \lor Q) \land \neg Q$ unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?

We will present three Decision Procedures for propositional logic

- Truth Tables
- Semantic Tableaux
- DPLL/CDCL

Method 1: Truth Tables

$$F: P \wedge Q \rightarrow P \vee \neg Q$$

P Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0 0	0	1	1	1
0 1	0	0	0	1
1 0	0	1	1	1
1 1	1	0	1	1

Thus F is valid.

$$F\,:\,P\,\vee\,Q\to P\,\wedge\,Q$$

	P Q	$P \lor Q$	$P \wedge Q$	F	
	0 0	0	0	1	\leftarrow satisfying I
	0 1	1	0	0	← falsifying <i>I</i>
Γ	1 0	1	0	0	
	1 1	1	1	1	

Thus F is satisfiable, but invalid.

Method 2: Semantic Argument (Semantic Tableaux)

- Assume F is not valid and I a falsifying interpretation: $I \not\models F$
- Apply proof rules.
- ullet If no contradiction reached and no more rules applicable, F is invalid.
- If in every branch of proof a contradiction reached, F is valid.

Semantic Argument: Proof rules

$$\begin{array}{c|c}
I \models \neg F \\
I \not\models F
\end{array}$$

$$\begin{array}{c|c}
I \models F \land G \\
I \models F \\
I \models G
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \land G \\
I \models F \lor G
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \lor G \\
I \models F \mid I \models G
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \lor G \\
I \not\models F \mid I \models G
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F \mid I \models G
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F \mid I \models G
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G \\
I \not\models F
\end{array}$$

$$\begin{array}{c|c}
I \not\models F \rightarrow G
\end{array}$$

Prove $F: P \wedge Q \rightarrow P \vee \neg Q$ is valid.

Let's assume that F is not valid and that I is a falsifying interpretation.

- 1. $I \not\models P \land Q \rightarrow P \lor \neg Q$
- 2. $I \models P \land Q$
- 3. $I \not\models P \lor \neg Q$
- 4. $I \models P$
- 5. $I \not\models P$
- 6. *I* |= ⊥

assumption

- 1, Rule \rightarrow
- 1, Rule \rightarrow
- 2, Rule \wedge
- 3, Rule ∨
- 4 and 5 are contradictory

Thus F is valid.

Prove
$$F:(P o Q) \wedge (Q o R) o (P o R)$$
 is valid.

Let's assume that F is not valid.

Our assumption is incorrect in all cases — F is valid.

Is
$$F: P \lor Q \to P \land Q$$
 valid?

Let's assume that F is not valid.

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:

$$\overline{I_1 \,:\, \{P \ \mapsto \ \mathsf{true}, \ Q \ \mapsto \ \mathsf{false}\}} \quad I_2 \,:\, \{Q \ \mapsto \ \mathsf{true}, \ P \ \mapsto \ \mathsf{false}\}$$

We have to derive a contradiction in all cases for F to be valid.

DPLL/CDCL is a efficient decision procedure for propositional logic. History:

- 1960s: Davis, Putnam, Logemann, and Loveland presented DPLL.
- 1990s: Conflict Driven Clause Learning (CDCL).
- Today, very efficient solvers using specialized data structures and improved heuristics.

DPLL/CDCL doesn't work on arbitrary formulas, but only on a certain normal form.

Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first. Convert it into a simpler normal form, e.g.:

- Negation Normal Form: No \rightarrow and no \leftrightarrow ; negation only before atoms.
- Conjunctive Normal Form: Negation normal form, where conjunction is outside, disjunction is inside.
- Disjunctive Normal Form: Negation normal form, where disjunction is outside, conjunction is inside.

The formula in normal form should be equivalent to the original input.

Equivalence

 F_1 and F_2 are equivalent $(F_1 \Leftrightarrow F_2)$ iff for all interpretations I, $I \models F_1 \leftrightarrow F_2$

To prove $F_1 \Leftrightarrow F_2$ show $F_1 \leftrightarrow F_2$ is valid.

$$F_1 ext{ implies} F_2 (F_1 \Rightarrow F_2)$$
 iff for all interpretations $I, I \models F_1 \rightarrow F_2$

 $F_1 \Leftrightarrow F_2$ and $F_1 \Rightarrow F_2$ are not formulae!

Equivalence is a Congruence relation

If $F_1 \Leftrightarrow F_1'$ and $F_2 \Leftrightarrow F_2'$, then

- $\neg F_1 \Leftrightarrow \neg F_1'$
- $F_1 \vee F_2 \Leftrightarrow F_1' \vee F_2'$
- $F_1 \wedge F_2 \Leftrightarrow F_1' \wedge F_2'$
- $F_1 \rightarrow F_2 \Leftrightarrow F_1' \rightarrow F_2'$
- $F_1 \leftrightarrow F_2 \Leftrightarrow F_1' \leftrightarrow F_2'$
- if we replace in a formula F a subformula F_1 by F'_1 and obtain F', then $F \Leftrightarrow F'$.

Negations appear only in literals. (only \neg , \land , \lor)

To transform F to equivalent F' in NNF use recursively the following template equivalences (left-to-right):

$$\neg\neg F_1 \Leftrightarrow F_1 \quad \neg \top \Leftrightarrow \bot \quad \neg \bot \Leftrightarrow \top \\
\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2 \\
\neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2$$
De Morgan's Law
$$F_1 \to F_2 \Leftrightarrow \neg F_1 \lor F_2 \\
F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \to F_2) \land (F_2 \to F_1)$$

Convert
$$F: (Q_1 \vee \neg \neg R_1) \wedge (\neg Q_2 \rightarrow R_2)$$
 into NNF
$$(Q_1 \vee \neg \neg R_1) \wedge (\neg Q_2 \rightarrow R_2)$$
 $\Leftrightarrow (Q_1 \vee R_1) \wedge (\neg Q_2 \rightarrow R_2)$

$$\Leftrightarrow (Q_1 \vee R_1) \wedge (\neg Q_2 \rightarrow R_2)$$

$$\Leftrightarrow (Q_1 \vee R_1) \wedge (\neg \neg Q_2 \vee R_2)$$

$$\Leftrightarrow (Q_1 \vee R_1) \wedge (Q_2 \vee R_2)$$

The last formula is equivalent to F and is in NNF.

Disjunction of conjunctions of literals

$$\bigvee_{i} \bigwedge_{j} \ell_{i,j}$$
 for literals $\ell_{i,j}$

To convert F into equivalent F' in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$\begin{array}{l} (F_1 \vee F_2) \wedge F_3 \Leftrightarrow (F_1 \wedge F_3) \vee (F_2 \wedge F_3) \\ F_1 \wedge (F_2 \vee F_3) \Leftrightarrow (F_1 \wedge F_2) \vee (F_1 \wedge F_3) \end{array} \right\} dist$$

Convert
$$F: (Q_1 \vee \neg \neg R_1) \wedge (\neg Q_2 \rightarrow R_2)$$
 into DNF

$$\begin{array}{ll} (Q_1 \vee \neg \neg R_1) \wedge (\neg Q_2 \rightarrow R_2) \\ \Leftrightarrow (Q_1 \vee R_1) \wedge (Q_2 \vee R_2) & \text{in NNF} \\ \Leftrightarrow (Q_1 \wedge (Q_2 \vee R_2)) \vee (R_1 \wedge (Q_2 \vee R_2)) & \text{dist} \\ \Leftrightarrow (Q_1 \wedge Q_2) \vee (Q_1 \wedge R_2) \vee (R_1 \wedge Q_2) \vee (R_1 \wedge R_2) & \text{dist} \end{array}$$

The last formula is equivalent to F and is in DNF. Note that formulas can grow exponentially.

Conjunction of disjunctions of literals

$$\bigwedge_{i} \bigvee_{j} \ell_{i,j} \quad \text{for literals } \ell_{i,j}$$

To convert F into equivalent F' in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

$$F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$$

A disjunction of literals $P_1 \vee P_2 \vee \neg P_3$ is called a clause. For brevity we write it as set: $\{P_1, P_2, \overline{P_3}\}$. A formula in CNF is a set of clauses (a set of sets of literals).

Definition (Equisatisfiability)

F and F' are equisatisfiable, iff

F is satisfiable if and only if F' is satisfiable

Every formula is equisatifiable to either \top or \bot .

There is a efficient conversion of F to F' where

- F' is in CNF and
- \bullet F and F' are equisatisfiable

Note: efficient means polynomial in the size of F.

Basic Idea:

- Introduce a new variable P_G for every subformula G; unless G is already an atom.
- For each subformula $G: G_1 \circ G_2$ produce a small formula $P_G \leftrightarrow P_{G_1} \circ P_{G_2}$.
- encode each of these (small) formulae separately to CNF.

The formula

$$P_F \wedge \bigwedge_G CNF(P_G \leftrightarrow P_{G_1} \circ P_{G_2})$$

is equisatisfiable to F.

The number of subformulae is linear in the size of F.

The time to convert one small formula is constant!

Example: CNF

Convert $F: P \lor Q \to P \land \neg R$ to CNF.

Introduce new variables: P_F , $P_{P\vee Q}$, $P_{P\wedge \neg R}$, $P_{\neg R}$. Create new formulae and convert them to CNF separately:

ullet $P_F \leftrightarrow (P_{P \lor Q} \to P_{P \land \neg R})$ in CNF:

$$F_1\,:\,\{\{\overline{P_F},\overline{P_{P\vee Q}},P_{P\wedge \neg R}\},\{P_F,P_{P\vee Q}\},\{P_F,\overline{P_{P\wedge \neg R}}\}\}$$

• $P_{P \lor Q} \leftrightarrow P \lor Q$ in CNF:

$$F_2: \{\{\overline{P_{P\vee Q}}, P\vee Q\}, \{P_{P\vee Q}, \overline{P}\}, \{P_{P\vee Q}, \overline{Q}\}\}$$

• $P_{P \wedge \neg R} \leftrightarrow P \wedge P_{\neg R}$ in CNF:

$$F_3\,:\,\big\{\big\{\overline{P_{P\wedge\neg R}}\,\vee\,P\big\},\big\{\overline{P_{P\wedge\neg R}},P_{\neg R}\big\},\big\{P_{P\wedge\neg R},\overline{P},\overline{P_{\neg R}}\big\}\big\}$$

- $P_{\neg R} \leftrightarrow \neg R$ in CNF: $F_4: \{\{\overline{P_{\neg R}}, \overline{R}\}, \{P_{\neg R}, R\}\}$
- $\{\{P_F\}\}\cup F_1\cup F_2\cup F_3\cup F_4 \text{ is in CNF and equisatisfiable to } F.$

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Algorithm to decide PL formulae in CNF.
- Published by Davis, Logemann, Loveland (1962).
- Often miscited as Davis, Putnam (1960), which describes a different algorithm.

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

```
let rec DPLL F = 
let F' = PROP F in
let F'' = PLP F' in
if F'' = \top then true
else if F'' = \bot then false
else
let P = CHOOSE \ vars(F'') in
(DPLL F''\{P \mapsto \top\}) \lor (DPLL F''\{P \mapsto \bot\})
```

Unit Propagation (PROP)

If a clause contains one literal ℓ ,

- Set ℓ to \top .
- Remove all clauses containing ℓ .
- Remove $\neg \ell$ in all clauses.

Based on resolution

$$\frac{\ell \qquad \neg \ell \lor C}{C} \leftarrow \mathsf{clause}$$

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to \top .

If P occurs only negative set it to \bot .

$$F: (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

Branching on Q

$$F{Q \mapsto \top} : (R) \land (\neg R) \land (P \lor \neg R)$$

By unit resolution

$$R \qquad (\neg R)$$

$$F\{Q \mapsto \top\} = \bot \Rightarrow \mathsf{false}$$

On the other branch

$$\begin{array}{lll} F\{Q \mapsto \bot\} : (\neg P \lor R) \\ F\{Q \mapsto \bot, R \mapsto \top, P \mapsto \bot\} = \top \Rightarrow \mathsf{true} \end{array}$$

F is satisfiable with satisfying interpretation

$$I: \{P \mapsto \mathsf{false}, Q \mapsto \mathsf{false}, R \mapsto \mathsf{true}\}$$

$$F: (\neg P \lor Q \lor R) \land (\neg Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

$$Q \mapsto \top \qquad \qquad F$$

$$Q \mapsto \bot$$

$$(R) \land (\neg R) \land (P \lor \neg R) \qquad \qquad (\neg P \lor R)$$

$$R \mapsto \top$$

$$R \quad (\neg R) \qquad \qquad | \qquad | \qquad \qquad \qquad | \qquad \qquad \qquad | \qquad \qquad \qquad | \qquad \qquad | \qquad \qquad \qquad \qquad \qquad \qquad | \qquad |$$

Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

- Alice says that Doris is a knave.
- Bob tells you that Alice is a knave.
- Charles claims that Alice is a knave.
- Doris tells you, 'Of Charles and Bob, exactly one is a knight.'

Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

- $A \leftrightarrow \neg D$
- $B \leftrightarrow \neg A$
- $C \leftrightarrow \neg A$
- $D \leftrightarrow \neg (C \leftrightarrow B)$

In CNF:

- $\{\overline{A}, \overline{D}\}, \{A, D\}$
- $\{\overline{B}, \overline{A}\}, \{B, A\}$
- $\{\overline{C}, \overline{A}\}, \{C, A\}$
- $\{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$

Solving Knights and Knaves

$$F: \{\{\overline{A}, \overline{D}\}, \{A, D\}, \{\overline{B}, \overline{A}\}, \{B, A\}, \{\overline{C}, \overline{A}\}, \{C, A\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}$$

PROP and PLP are not applicable. Decide on A:

$$F\{A \mapsto \bot\} : \{\{D\}, \{B\}, \{C\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}\}$$

By PROP we get:

$$F\{A \mapsto \bot, D \mapsto \top, B \mapsto \top, C \mapsto \top\} : \bot$$

Unsatisfiable! Now set A to \top :

$$F\{A \mapsto \top\} : \{\{\overline{D}\}, \{\overline{B}\}, \{\overline{C}\}, \{\overline{D}, \overline{C}, \overline{B}\}, \{\overline{D}, C, B\}, \{D, \overline{C}, B\}, \{D, C, \overline{B}\}\}\}$$

By PROP we get:

$$F\{A \mapsto \top, D \mapsto \bot, B \mapsto \bot, C \mapsto \bot\} : \top$$

Satisfying assignment! Jochen Hoenicke (Software Engineering)

Consider the following problem:

$$\begin{split} \{ \{A_1, B_1\}, \{ \overline{P_0}, \overline{A_1}, P_1\}, \{ \overline{P_0}, \overline{B_1}, P_1\}, \{A_2, B_2\}, \{ \overline{P_1}, \overline{A_2}, P_2\}, \{ \overline{P_1}, \overline{B_2}, P_2\}, \\ \dots, \{A_n, B_n\}, \{ \overline{P_{n-1}}, \overline{A_n}, P_n\}, \{ \overline{P_{n-1}}, \overline{B_n}, P_n\}, \{ P_0\}, \{ \overline{P_n} \} \} \end{split}$$

For some literal orderings, we need exponentially many steps. Note, that

$$\{\{A_i,B_i\},\{\overline{P_{i-1}},\overline{A_i},P_i\},\{\overline{P_{i-1}},\overline{B_i},P_i\}\} \Rightarrow \{\{\overline{P_{i-1}},P_i\}\}$$

If we learn the right clauses, unit propagation will immediately give unsatisfiable.

Partial Assignments and Unit/Conflict Clauses

Do not change the clause set, but only assign literals (as global variables). When you assign true to a literal ℓ ,also assign false to $\overline{\ell}$.

For a partial assignment

- A clause is true if one of its literals is assigned true.
- A clause is a conflict clause if all its literals are assigned false.
- A clause is a unit clause if all but one literals are assigned false and the last literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a unit clause.

Explain unsatisfiability of partial assignment by conflict clause and learn it!

Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

- If a conflict is found we return the conflict clause.
- If variable in conflict were derived by unit propagation use resolution rule to generate a new conflict clause.
- If variable in conflict was derived by decision, use learned conflict as unit clause

The functions DPLL and PROP return a conflict clause or satisfiable.

```
let rec DPLL =
  let PROP U =
   if conflictclauses \neq \emptyset
     CHOOSE conflictclauses
   else if unitclauses \neq \emptyset
     PROP (CHOOSE unitclauses)
   else if coreclauses \neq \emptyset
       let \ell = \text{CHOOSE} (| | coreclauses) \cap unassigned in
       \mathsf{val}[\ell] := \top
      let C = DPLL in
       if (C = \text{satisfiable}) satisfiable
       else
           val[\ell] := undef
           if (\bar{\ell} \notin C) C
           else LEARN C; PROP C
   else satisfiable
```

The function PROP takes a unit clause and does unit propagation. It calls DPLL recursively and returns a conflict clause or satisfication.

let PROP
$$U =$$
let $\ell = \text{CHOOSE } U \cap \text{unassigned in}$
val $[\ell] := \top$
let $C = \text{DPLL in}$
if $(C = \text{satisfiable})$
satisfiable
else
val $[\ell] := \text{undef}$
if $(\bar{\ell} \notin C) C$
else $U \setminus \{\ell\} \cup C \setminus \{\bar{\ell}\}$

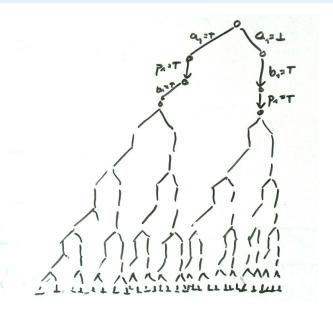
The last line does resolution:

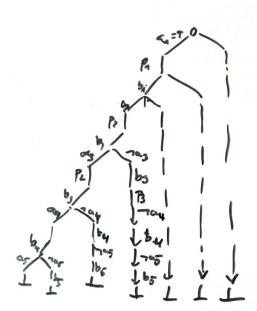
$$\frac{\ell \vee C_1 \qquad \neg \ell \vee C_2}{C_1 \vee C_2}$$

Example

$$\begin{split} \{\{A_1,B_1\},\{\overline{P_0},\overline{A_1},P_1\},\{\overline{P_0},\overline{B_1},P_1\},\{A_2,B_2\},\{\overline{P_1},\overline{A_2},P_2\},\{\overline{P_1},\overline{B_2},P_2\},\\ & \ldots,\{A_n,B_n\},\{\overline{P_{n-1}},\overline{A_n},P_n\},\{\overline{P_{n-1}},\overline{B_n},P_n\},\{P_0\},\{\overline{P_n}\}\} \end{split}$$

- Unit propagation (PROP) sets P_0 and $\overline{P_n}$ to true.
- Decide, e.g. A_1 , PROP sets $\overline{P_1}$
- Continue until A_{n-1} , PROP sets $\overline{P_{n-1}}$, $\overline{A_n}$ and $\overline{B_n}$
- Conflict clause computed: $\{\overline{A_{n-1}}, \overline{P_{n-2}}, P_n\}$.
- Conflict clause does not depend on A_1, \ldots, A_{n-2} and can be used again.





- Pure Literal Propagation is unnecessary:
 A pure literal is always chosen right and never causes a conflict.
- Modern SAT-solvers use this procedure but differ in
 - heuristics to choose literals/clauses.
 - efficient data structures to find unit clauses.
 - better conflict resolution to minimize learned clauses.
 - restarts (without forgetting learned clauses).
- Even with the optimal heuristics DPLL is still exponential:
 The Pidgeon-Hole problem requires exponential resolution proofs.

- Syntax and Semantics of Propositional Logic
- Methods to decide satisfiability/validity of formulae:
 - Truth table
 - Semantic Tableaux
 - DPLL
- Run-time of all presented algorithms is worst-case exponential in length of formula.
- Deciding satisfiability is NP-complete.