
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 1 / 414

Quantifier Elimination

Quantifier Elimination

Quantifier Elimination (QE) removes quantifiers from formulae:

Given a formula with quantifiers, e.g., ∃x .F [x , y , z].

Goal: find an equivalent quantifier-free formula G [y , z].

The free variables of F and G are the same.

∃x .F [x , y , z] ⇔ G [y , z]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 133 / 414

QE as Decision Procedure

Decide satisfiabilty for a formula F , e.g. in TQ, using quantifier
elimination:

Given a formula F , with free variable x1, . . . , xn.

Build ∃x1 . . . ∃xn.F .

Build equivalent quantifier free formula G .
G contains only constants, functions and predicates
i.e. 0, 1,+,−,≥,=.

Compute truth value of G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 134 / 414

QE algorithm

In developing a QE algorithm for theory T , we need only consider formulae
of the form

∃x . F
for quantifier-free F

Example: For Σ-formula

G1: ∃x . ∀y . ∃z . F1[x , y , z]︸ ︷︷ ︸
F2[x ,y]

G2: ∃x . ∀y . F2[x , y]

G3: ∃x . ¬∃y . ¬F2[x , y]︸ ︷︷ ︸
F3[x]

G4: ∃x . ¬F3[x]︸ ︷︷ ︸
F4

G5: F4

G5 is quantifier-free and T -equivalent to G1
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 135 / 414

Syntactic sugar for Rationals

Consider the Signature of Rationals: ΣQ : {0, 1, +, −, =, ≥}
We extend the signature with the predicate >, which is defined as

x > y :⇔ x ≥ y ∧ ¬(x = y).

Additionally we allow predicates < and ≤:

x < y :⇔ y > x x ≤ y :⇔ y ≥ x .

We extend the signature by fractions:

·
a
∈ ΣQ for a ∈ Z+

which are unary function symbols, with their usual meaning.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 136 / 414

Ferrante and Rackoff’s Method

Given a ΣQ-formula ∃x . F [x], where F [x] is quantifier-free
Generate quantifier-free formula F4 (four steps) s.t.

F4 is ΣQ-equivalent to ∃x . F [x].

1 Put F [x] in NNF.

2 Eliminate negated literals.

3 Solve the literals s.t. x appears isolated on one side.

4 Finite disjunction
∨

t∈SF F [t].

∃x .F [x] ⇔
∨
t∈SF

F [t].

where SF depends on the formula F .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 137 / 414

Step 1 and 2

Step 1: Put F [x] in NNF. The result is ∃x . F1[x].

Step 2: Eliminate negated literals and ≥ (left to right)

s ≥ t ⇔ s > t ∨ s = t
¬(s > t) ⇔ t > s ∨ t = s
¬(s ≥ t) ⇔ t > s
¬(s = t) ⇔ t < s ∨ t > s

The result ∃x . F2[x] does not contain negations.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 138 / 414

Step 3

Solve for x in each atom of F2[x], e.g.,

ax + t2 < bx + t1 ⇒ x <
t1 − t2
a − b

where a − b ∈ Z+.

All atoms containing x in the result ∃x . F3[x] have form

(A) x < t

(B) t < x

(C) x = t

where t is a term that does not contain x .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 139 / 414

Step 4 (Part 1)

Construct from F3[x]

left infinite projection F3[−∞] by replacing

(A) atoms x < t by >
(B) atoms t < x by ⊥
(C) atoms x = t by ⊥

right infinite projection F3[+∞] by replacing

(A) atoms x < t by ⊥
(B) atoms t < x by >
(C) atoms x = t by ⊥

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 140 / 414

Step 4 (Part 2)

Let S be the set of terms t from (A), (B), (C) atoms.
Construct the formula

F4 :
∨
t∈SF

F3[t], where SF := {−∞,∞} ∪
{
s + t

2

∣∣∣∣ s, t ∈ S

}

which is TQ-equivalent to ∃x . F [x].

F3[−∞] captures the case when small x ∈ Q satisfy F3[x]

F3[−∞] captures the case when large x ∈ Q satisfy F3[x]

if s ≡ t, s+t
2 = s captures the case when s ∈ S satisfies F3[s]

if s < t are adjacent numbers, s+t
2 represents the whole interval

(s, t).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 141 / 414

Intuition

Four cases are possible:
1 All numbers x smaller than the smallest term satisfy F [x].

←−)t1 t2 · · · tn

2 All numbers x larger than the largest term satisfy F [x].

t1 t2 · · · tn(−→

3 Some ti ,satisfies F [x].

t1 · · · ti · · · tn
↑

4 On an open interval between two terms every element satisfies F [x].

t1 · · · ti (←→)ti+1 · · · tn
ti+ti+1

2

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 142 / 414

Correctness of Step 4

Theorem

Let SF be the set of terms constructed from F3[x] as in Step 4. Then
∃x . F3[x] ⇔

∨
t∈SF F3[t].

Proof of Theorem

⇐ If
∨

t∈SF F3[t] is true, then F3[t] for some t ∈ SF is true.

If F3[s+t
2] is true, then obviously ∃x . F3[x] is true.

If F3[−∞] is true, choose some x < t for all t ∈ S . Then F3[x] is
true.
If F3[∞] is true, choose some x > t for all t ∈ S . Then F3[x] is true.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 143 / 414

Correctness of Step 4

⇒ If I |= ∃x . F3[x] then there is value v such that

I / {x 7→ v} |= F3 .

If v < αI [t] for all t ∈ S , then I |= F3[−∞].
If v > αI [t] for all t ∈ S , then I |= F3[∞].
If v = αI [t] for some t ∈ S , then I |= F [t+t

2].

Otherwise choose largest s ∈ S with αI [s] < v and smallest t ∈ S
with αI [t] > v.
Since no atom of F3 can distinguish between values in interval (s, t),
F3[v] ⇔ F3[s+t

2]. Hence, I |= F [s+t
2].

In all cases I |=
∨

t∈SF F3[t].

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 144 / 414

Example

∃x . 3x + 1 < 10 ∧ 7x − 6 > 7︸ ︷︷ ︸
F [x]

Solving for x

∃x . x < 3 ∧ x >
13

7︸ ︷︷ ︸
F3[x]

Step 4:

F4 :
∨
t∈SF

(
t < 3 ∧ t >

13

7

)
︸ ︷︷ ︸

F3[t]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 145 / 414

Example contd.

SF = {−∞,+∞, 3, 13

7
,

3 + 13
7

2
}.

F3[x] = x < 3 ∧ x > 13/7

F−∞ ⇔ > ∧ ⊥ ⇔ ⊥ F+∞ ⇔ ⊥ ∧ > ⇔ ⊥

F3 [3]⊥ ∧ > ⇔ ⊥ F3

[
13

7

]
⇔ > ∧ ⊥ ⇔ ⊥

F3

[
13
7 + 3

2

]
:

13
7 + 3

2
< 3 ∧

13
7 + 3

2
>

13

7
⇔ >

Thus, F4 :
∨

t∈SF F3[t] ⇔ > is TQ-equivalent to ∃x . F [x],
so ∃x . F [x] is TQ-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 146 / 414

Example

∃x . 2x > y ∧ 3x < z︸ ︷︷ ︸
F [x]

Solving for x

∃x . x >
y

2
∧ x <

z

3︸ ︷︷ ︸
F3[x]

Step 4: F−∞ ⇔ ⊥, F+∞ ⇔ ⊥, F3[y2] ⇔ ⊥ and F3[z3] ⇔ ⊥.

F4 :
y
2 + z

3

2
>

y

2
∧

y
2 + z

3

2
<

z

3

which simplifies to:
F4 : 2z > 3y

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 147 / 414

Quantifier Elimination for TZ

ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, <}
Consider the formula

F : ∃x . 2x = y

Which quantifier free formula G [y] is equivalent to F?

There is no such formula!

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 148 / 414

No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

Proof (Structural Induction over F)

Base case: F is an atomic formula:
>,⊥, t1 = t2, a · y = t, t1 < t2, a · y < t.

Z+ \ S> = Z+ ∩ S⊥ = ∅ is finite

St1=t2 and St1<t2 are either S> or S⊥.

Z+ ∩ Sa·y=t , (a 6= 0) has at most one element.

Z+ ∩ Sa·y<t , a > 0 is finite.

Z+ \ Sa·y<t , a < 0 is finite.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 149 / 414

No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F ,G . Show it for
¬F ,F ∧ G ,F ∨ G ,F → G ,F ↔ G .

¬F : We have Z+ ∩ S¬F = Z+ \ S and Z+ \ S¬F = Z+ ∩ S and by
ind.-hyp one of these sets is finite.

F ∧ G : We have Z+ ∩ SF∧G = (Z+ ∩ SF) ∩ (Z+ ∩ SG) and
Z+ \ SF∧G = (Z+ \ SF) ∪ (Z+ \ SG).
If the latter set is not finite then one of Z+ ∩ SF or Z+ ∩ SG is finite.
In both cases Z+ ∩ SF∧G is finite.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 150 / 414

No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F ,G . Show it for
¬F ,F ∧ G ,F ∨ G ,F → G ,F ↔ G .

F ∨ G follows from previous, since SF∨G = S¬(¬F∧¬G).

F → G follows from SF→G = S(¬F∨G).

F ↔ G follows from SF↔G = S(F→G)∧(G→F).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 151 / 414

No QE for TZ

Lemma

Given quantifier-free ΣZ-formula F s.t. free(F) = {y}. Let
SF : {n ∈ Z : F{y 7→ n} is TZ-valid} .

Either Z+ ∩ SF or Z+ \ SF is finite.
where Z+ is the set of positive integers

ΣZ-formula F : ∃x . 2x = y (with quantifier)

SF : even integers

Z+ ∩ SF : positive even integers — infinite
Z+ \ SF : positive odd integers — infinite

Therefore, by the lemma, there is no quantifier-free TZ-formula that is
TZ-equivalent to F .

Thus, TZ does not admit QE.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 152 / 414

Augmented theory T̂Z

Σ̂Z: ΣZ with countable number of unary divisibility predicates

ΣZ ∪ {1|·, 2|·, 3|·, . . . }
Intended interpretations:

k | x holds iff k divides x without any remainder

Axioms of T̂Z: axioms of TZ with additional countable set of axioms

∀x . k | x ↔ ∃y . x = ky for k ∈ Z+

Example:

x > 1 ∧ y > 1 ∧ 2 | x + y

is satisfiable (choose x = 2, y = 2).

¬(2 | x) ∧ 4 | x
is not satisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 153 / 414

T̂Z admits QE (Cooper’s method)

Algorithm: Given Σ̂Z-formula ∃x . F [x], where F is quantifier-free

Construct quantifier-free Σ̂Z-formula that is equivalent to ∃x . F [x].

1 Put F[x] into Negation Normal Form (NNF).

2 Normalize literals: s < t, k|t, or ¬(k |t).

3 Put x in s < t on one side: hx < t or s < hx .

4 Replace hx with x ′ without a factor.

5 Replace F [x ′] by
∨
F [j] for finitely many j .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 154 / 414

Cooper’s Method: Step 1

Put F [x] in NNF F1[x], that is,
∃x . F1[x] has negations only in literals (only ∧, ∨)

and T̂Z-equivalent to ∃x . F [x]

Example:
∃x . ¬(x − 6 < z − x ∧ 4 | 5x + 1 → 3x < y)

is equivalent to
∃x . ¬(3x < y) ∧ x − 6 < z − x ∧ 4 | 5x + 1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 155 / 414

Cooper’s Method: Step 2

Replace (left to right)

s = t ⇔ s < t + 1 ∧ t < s + 1
¬(s = t) ⇔ s < t ∨ t < s
¬(s < t) ⇔ t < s + 1

The output ∃x . F2[x] contains only literals of form

s < t , k | t , or ¬(k | t) ,

where s, t are T̂Z-terms and k ∈ Z+.

Example:
∃x . ¬(3x < y) ∧ x − 6 < z − x ∧ 4 | 5x + 1

is equivalent to
∃x . y < 3x + 1 ∧ x − 6 < z − x ∧ 4 | 5x + 1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 156 / 414

Cooper’s Method: Step 3

Collect terms containing x so that literals have the form

hx < t , t < hx , k | hx + t , or ¬(k | hx + t) ,

where t is a term and h, k ∈ Z+. The output is the formula ∃x . F3[x],

which is T̂Z-equivalent to ∃x . F [x].

Example:
∃x . y < 3x + 1 ∧ x − 6 < z − x ∧ 4 | 5x + 1

is equivalent to
∃x . y − 1 < 3x ∧ 2x < z + 6 ∧ 4 | 5x + 1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 157 / 414

Cooper’s Method: Step 4

Let
δ = lcm{h : h is a coefficient of x in F3[x]} ,

where lcm is the least common multiple. Multiply atoms in F3[x] by
constants so that δ is the coefficient of x everywhere:

hx < t ⇔ δx < h′t where h′h = δ
t < hx ⇔ h′t < δx where h′h = δ

k | hx + t ⇔ h′k | δx + h′t where h′h = δ
¬(k | hx + t) ⇔ ¬(h′k | δx + h′t) where h′h = δ

The result ∃x . F ′3[x], in which all occurrences of x in F ′3[x] are in terms δx .

Replace δx terms in F ′3 with a fresh variable x ′ to form

F ′′3 : F3{δx 7→ x ′}

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 158 / 414

Cooper’s Method: Step 4 contd.

Finally, construct

∃x ′. F ′′3 [x ′] ∧ δ | x ′︸ ︷︷ ︸
F4[x ′]

∃x ′.F4[x ′] is equivalent to ∃x . F [x] and each literal of F4[x ′] has one of
the forms:

(A) x ′ < t

(B) t < x ′

(C) k | x ′ + t

(D) ¬(k | x ′ + t)

where t is a term that does not contain x , and k ∈ Z+.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 159 / 414

Cooper’s Method: Step 4 (Example)

Example: T̂Z-formula
∃x . 2x < z + 6 ∧ y − 1 < 3x ∧ 4 | 5x + 1︸ ︷︷ ︸

F3[x]

Collecting coefficients of x :

δ = lcm(2, 3, 5) = 30

Multiply when necessary

∃x . 30x < 15z + 90 ∧ 10y − 10 < 30x ∧ 24 | 30x + 6

Replacing 30x with fresh x ′

∃x ′. x ′ < 15z + 90 ∧ 10y − 10 < x ′ ∧ 24 | x ′ + 6 ∧ 30 | x ′︸ ︷︷ ︸
F4[x ′]

∃x ′. F4[x ′] is equivalent to ∃x . F3[x]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 160 / 414

Cooper’s Method: Result of Step 4

∃x ′.F4[x ′] is equivalent to ∃x . F [x] and each literal of F4[x ′] has one of
the forms:

(A) x ′ < t

(B) t < x ′

(C) k | x ′ + t

(D) ¬(k | x ′ + t)

where t is a term that does not contain x , and k ∈ Z+.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 161 / 414

Cooper’s Method: Step 5

Construct

left infinite projection F−∞[x ′]

of F4[x ′] by

(A) replacing literals x ′ < t by >
(B) replacing literals t < x ′ by ⊥
idea: very small numbers satisfy (A) literals but not (B) literals

Let

δ = lcm

{
k of (C) literals k | x ′ + t
k of (D) literals ¬(k | x ′ + t)

}
and B be the set of terms t appearing in (B) literals. Construct

F5 :
δ∨

j=1

F−∞[j] ∨
δ∨

j=1

∨
t∈B

F4[t + j] .

F5 is quantifier-free and T̂Z-equivalent to F .
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 162 / 414

Cooper’s Method: Step 5 (Example)

∃x ′. x ′ < 15z + 90 ∧ 10y − 10 < x ′ ∧ 24 | x ′ + 6 ∧ 30 | x ′︸ ︷︷ ︸
F4[x ′]

Compute lcm: δ = lcm(24, 30) = 120
Then

F5 =
120∨
j=1

> ∧ ⊥ ∧ 24 | j + 6 ∧ 30 | j

∨
120∨
j=1

10y − 10 + j < 15z + 90 ∧ 10y − 10 < 10y − 10 + j

∧ 24 | 10y − 10 + j + 6 ∧ 30 | 10y − 10 + j

The formula can be simplified to:

F5 =
120∨
j=1

10y − 10 + j < 15z + 90 ∧ 24 | 10y − 10 + j + 6 ∧ 30 | 10y − 10 + j

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 163 / 414

Correctness of Step 5

Theorem

Let F5 be the formula constructed from ∃x ′. F4[x ′] as in Step 5. Then
∃x ′. F4[x ′] ⇔ F5.

Lemma[Periodicity]: For all atoms k | x ′ + t in F4, we have k | δ.
Therefore, k | x ′ + t iff k | x ′ + λδ + t for all λ ∈ Z.

Proof of Theorem

⇐ If F5 is true, there are two cases: F−∞[j] is true or F4[t + j] is true.
If F4[t + j] is true, than obviously ∃x ′. F4[x ′] is true. If F−∞[j] is
true, then (due to periodicity) F−∞[j + λ · δ] is true.
If λ < t − 1 for all t ∈ A ∪ B, then
j + λ · δ < δ + (t − 1)δ = δt ≤ t. Thus,

F−∞[j + λ · δ] ⇔ F4[j + λ · δ] ⇒ ∃x ′. F4[x ′] .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 164 / 414

Correctness of Step 5

⇒ Assume for some x ′, F4[x ′] is true. If ¬(t < x ′) for all t ∈ B, then
choose jx ′ ∈ {1, . . . , δ} such that δ | (jx ′ − x ′). jx ′ will satisfy all (C)
and (D) literals that x ′ satisfies. x ′ does not satisfy any (B) literal.
Therefore if F4[x ′] is true, F−∞[j] must be true. Therefore F5 is true.
If t < x ′ for some t ∈ B, then let

tx ′ = max{t ∈ B|t < x ′}

and choose jx ′ ∈ {1, . . . , δ} such that δ |(tx ′ + jx ′ − x ′). We claim
that F4[tx ′ + jx ′] is true.
Since x ′ = tx ′ + jx ′ + λδ, x ′ and tx ′ + jx ′ satisfy the same (C) and
(D) literals (due to periodicity).
Since tx ′ + jx ′ > tx ′ = max{t ∈ B|t < x ′}, tx ′ + jx ′ satisfies all
(B) literals that are satisfied by x ′.
Since tx ′ < x ′ = tx ′ + jx ′ + λδ ≤ tx ′ + (λ + 1)δ, we conclude that
λ ≥ 0. Hence, x ′ ≥ tx ′ + jx ′ and tx ′ + jx ′ satisfies all (A) literals
satisfied by x ′.
Thus F4[tx + j ′x] is true. Therefore, F5 is true.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 165 / 414

Cooper’s Method: Step 5

Construct

left infinite projection F−∞[x ′]

of F4[x ′] by

(A) replacing literals x ′ < t by >
(B) replacing literals t < x ′ by ⊥

Let

δ = lcm

{
k of (C) literals k | x ′ + t
k of (D) literals ¬(k | x ′ + t)

}
and B be the set of terms t appearing in (B) literals. Construct

F5 :
δ∨

j=1

F−∞[j] ∨
δ∨

j=1

∨
t∈B

F4[t + j] .

F5 is quantifier-free and T̂Z-equivalent to F .
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 166 / 414

Symmetric Elimination

In step 5, if there are fewer
(A) literals x ′ < t

than
(B) literals t < x ′.

Construct the right infinite projection F+∞[x ′] from F4[x ′] by replacing

each (A) literal x ′ < t by ⊥
and

each (B) literal t < x ′ by >.

Then right elimination.

F5 :
δ∨

j=1

F+∞[−j] ∨
δ∨

j=1

∨
t∈A

F4[t − j] .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 167 / 414

Symmetric Elimination (Example)

∃x ′. x ′ < 15z + 90 ∧ 10y − 10 < x ′ ∧ 24 | x ′ + 6 ∧ 30 | x ′︸ ︷︷ ︸
F4[x ′]

Compute lcm: δ = lcm(24, 30) = 120
Then

F5 =
120∨
j=1

⊥ ∧ > ∧ 24 | − j + 6 ∧ 30 | − j

∨
120∨
j=1

15z + 90 − j < 15z + 90 ∧ 10y − 10 < 15z + 90 − j

∧ 24 | 15z + 90 − j + 6 ∧ 30 | 15z + 90 − j

The formula can be simplified to:

F5 =
120∨
j=1

10y − 10 < 15z + 90 − j ∧ 24 | 15z + 90 − j + 6 ∧ 30 | 15z + 90 − j

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 168 / 414

Example

∃x . (3x + 1 < 10 ∨ 7x − 6 > 7) ∧ 2 | x︸ ︷︷ ︸
F [x]

Isolate x terms
∃x . (3x < 9 ∨ 13 < 7x) ∧ 2 | x ,

so
δ = lcm{3, 7} = 21 .

After multiplying coefficients by proper constants,

∃x . (21x < 63 ∨ 39 < 21x) ∧ 42 | 21x ,

we replace 21x by x ′:

∃x ′. (x ′ < 63 ∨ 39 < x ′) ∧ 42 | x ′ ∧ 21 | x ′︸ ︷︷ ︸
F4[x ′]

.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 169 / 414

Then
F−∞[x ′] : (> ∨ ⊥) ∧ 42 | x ′ ∧ 21 | x ′ ,

or, simplifying,
F−∞[x ′] : 42 | x ′ ∧ 21 | x ′ .

Finally,
δ = lcm{21, 42} = 42 and B = {39} ,

so

F5 :

42∨
j=1

(42 | j ∧ 21 | j) ∨

42∨
j=1

((39 + j < 63 ∨ 39 < 39 + j) ∧ 42 | 39 + j ∧ 21 | 39 + j) .

Since 42 | 42 and 21 | 42, the left main disjunct simplifies to >, so that F

is T̂Z-equivalent to >. Thus, F is T̂Z-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 170 / 414

Decision Procedures for Quantifier-free Fragments

Quantifier elimination decides validity/satisfiable quantified formulae.

Can also be used for quantifier free formulae:
To decide satisfiability of F [x1, . . . , xn],
apply QE on ∃x1, . . . , xn. F [x1, . . . , xn].

But high complexity (doubly exponential for TQ).

Therefore, we are looking for a fast procedure.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 171 / 414

	Organisation
	Motivation
	Contents of Lecture
	Foundations: Propositional Logic
	Satisfiability and Validity
	Normal Forms
	DPLL

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

	Theories
	Theory of Equality
	T-Validity and T-Satisfiability
	Natural Numbers and Integers
	Rationals and Reals
	Recursive Data Structures
	Arrays
	Combination of Theories
	Decidability

	Quantifier Elimination
	Rationals: Ferrante and Rackoff
	Integers: Cooper's Method

	Quantifier-free Rationals
	Dutertre–de Moura Algorithm
	Termination
	Strict Bounds

	Quantifier-free Theory of Equality
	Congruence Closure Algorithm

	Theory of Lists
	Theory of Arrays
	Array Property Fragment

	Theory of Integer-Indexed Arrays
	Nelson-Oppen Theory Combination
	DPLL(T)
	Program Correctness
	Total Correctness

	Craig Interpolation
	Conclusion

