Decision Procedures

Jochen Hoenicke

Software Engineering
- Albert-Ludwigs-University Freiburg

UNI
FREIBURG

Winter Term 2015/16

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

1/ 414

Quantifier Elimination

Quantifier Elimination g

Quantifier Elimination (QE) removes quantifiers from formulae:

e Given a formula with quantifiers, e.g., Ix.F[x,y, z].
e Goal: find an equivalent quantifier-free formula Gy, z].

@ The free variables of F and G are the same.

Ix.Flx,y,z] < Gly,Z]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 133 / 414

QE as Decision Procedure g

Decide satisfiabilty for a formula F, e.g. in Tg, using quantifier
elimination:

o Given a formula F, with free variable xy, ..., x,.
@ Build 3x;...3x,.F.

@ Build equivalent quantifier free formula G.
G contains only constants, functions and predicates
i-e- 07 17 +7) Za =.

Compute truth value of G.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 134 / 414

QE algorithm 2

ZM
In developing a QE algorithm for theory T, we need only consider formufae
of the form

dx. F
for quantifier-free F

Example: For X-formula
Gi: Ix. Vy. Jz. Fx,y,Z]
—_——

F2[X7y]
Gp: Ix. Vy. Fy[x,y]
Gs: Ix. = 3y. =F[x,y]
—_—
F3[x]
Gy: Ix. —F3x]
—_———
Fa
G5Z F4

Gs is quantifier-free and T-equivalent to Gy
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 135 / 414

Syntactic sugar for Rationals g

Consider the Signature of Rationals: Yo: {0, 1, +, —, = >}
We extend the signature with the predicate >, which is defined as

x>y x>y Aa(x =y).
Additionally we allow predicates < and <:

X<y $&y>x x <y &y >x

We extend the signature by fractions:
€ Yo fora e A
a

which are unary function symbols, with their usual meaning.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 136 / 414

Ferrante and Rackoff's Method &

Given a Yg-formula 3x. F[x], where F[x] is quantifier-free
Generate quantifier-free formula Fs (four steps) s.t.
Fa4 is g-equivalent to Ix. F[x].
© Put F[x] in NNF.
@ Eliminate negated literals.
© Solve the literals s.t. x appears isolated on one side.
@ Finite disjunction \/,.s_ F[t].

IxFlx] < \/ FlL.

teSk

where Sg depends on the formula F.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 137 / 414

Step 1 and 2

Step 1: Put F[x] in NNF. The result is 3x. F1[x].

Step 2: Eliminate negated literals and > (left to right)

s>t &
(s >t) &
(s >t) &
(s =1t) &

s>tVs=t
t>sVit=s
t>s

t<sVit>s

The result Ix. Fp[x] does not contain negations.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

138 / 414

Step 3 g

Solve for x in each atom of Fy[x], e.g.,

t1 — ¢
ax +th < bx + 14 = x < 2
a—»b
where a — b € ZT.

All atoms containing x in the result Ix. F3[x] have form
(A) x < t
(B) t < x
(C) x =t

where t is a term that does not contain x.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 139 / 414

Step 4 (Part 1) -

Construct from F3[x]
e left infinite projection F3[—o0] by replacing
(A) atoms x < tby T
(B) atoms t < x by L
(C) atoms x = t by L

@ right infinite projection F3[+oc] by replacing
(A) atoms x < t by L
(B) atoms t < x by T
(C) atoms x = t by L

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 140 / 414

Step 4 (Part 2) -

Let S be the set of terms t from (A), (B), (C) atoms.
Construct the formula

Fa - \/ F3[t], where Sp := {—00,00} U {542r t

teSE

s,t € 5}

@ F3[—o0] captures the case when small x € Q satisfy F3[x]

which is Tg-equivalent to Ix. F[x].

@ F3[—o0] captures the case when large x € Q satisfy F3[x]
o if s = t, 5t = s captures the case when s € S satisfies F3[s]

if s < t are adjacent numbers, =1t represents the whole interval

(s, t). ’

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 141 / 414

Intuition g

Four cases are possible:
@ All numbers x smaller than the smallest term satisfy F[x].

)ttty

@ All numbers x larger than the largest term satisfy F[x].

ty ty- - ty(—

© Some tj,satisfies F[x].

ti -t ty
/l\
© On an open interval between two terms every element satisfies F[x].
ty - t,-(<—>)t,-+1 Sty
tittipy
2

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 142 / 414

Correctness of Step 4 &

Let Sk be the set of terms constructed from F3[x] as in Step 4. Then
dx. F3[X] = thSF F3[t].

Proof of Theorem

< If Vs, F3[t] is true, then F3[t] for some t € Sg is true.
If F3[=3*] is true, then obviously 3x. F3[x] is true.
If F3[—o0] is true, choose some x < t forall t € S. Then F3[x] is
true.
If F3[o0] is true, choose some x > t forall t € S. Then F3[x] is true.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 143 / 414

Correctness of Step 4 &

= If I = 3x. F3[x] then there is value v such that

I <{x — v} = F3.

If v.< ot] forall t € S, then | = F3[—o0].
If v.> q[t] forall t € S, then | = F3[o0].
If v.= «ft] for some t € S, then | |= F[51].

Otherwise choose largest s € S with o[s] < v and smallest t € S
with aq[t] > v.

Since no atom of F3 can distinguish between values in interval (s, t),
Fs3lv] & F3[$5]. Hence, I = F[=5!].

In all cases | = Vs, F3[t].

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 144 / 414

Example &

dx. 3x+1 <1I0ATX -6 >7

Flx]
Solving for x
13
dx. x < 3Ax > -
F3[x]
Step 4:
13
Fy - \/ <t<3/\t>7)
teSe
F3[t]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 145 / 414

Example contd.

13 3+ %2
Sf = {—oo,+oo,3,7, 5 1,

F3x] = x < 3Ax > 13/7

Foe TANLs L Fivn & LAT & L

13
FBBLAT s L F3[7}<:>T/\J_<:)L

13 13
=43 =43 13
7 7
— T
> < 3 A > >7<:>

Thus, Fs @ Vs, F3[t] & T is Tg-equivalent to Ix. F[x],
so dx. F[x] is Tg-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

146 / 414

Example

dx. 2x > y A3x < z
Flx]

Solving for x

y z
dx. “AXx < =
Xx>2 X 3

N~

F3[x]

Step4: Fooo & L, Fioo & L, R[4] & Land R3[3] & L.

Y z Y z
5+ % y 5+ % z
Fp: 2 3 5 2Z A2 3 <2
N 2 2 2 3
which simplifies to:
Fy: 2z > 3y

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

147 / 414

Quantifier Elimination for T g

Yy o {...,—-2,-1,0, 1, 2, ..., —3:,-2,2:, 3 ..., 4, —, =, <}
Consider the formula

F:3dx.2x =y

Which quantifier free formula G[y] is equivalent to F?

There is no such formulal

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 148 / 414

No QE for Ty :

Given quantifier-free ¥z-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tg-valid} .

Either Z+ N Sg or Zt \ Sk is finite.

where Z is the set of positive integers

Proof (Structural Induction over F)

Base case: F is an atomic formula:

T,L,ti =th,a-y=tt < thya-y < t.

Zt\ St =Z* NS, = 0 is finite

St;=t, and Sy <, are either St or S .

ZT N Ssy=¢, (a # 0) has at most one element.
ZT N Say<t, @ > 0 s finite.

ZF \ Say<t, a < 0is finite.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 149 / 414

v

No QE for Ty :

Given quantifier-free ¥z-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tg-valid} .

Either Z+ N Sg or Zt \ Sk is finite.

where Z is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for
-F,FANG,FV G F— G,F < G.
@ -F: Wehave ZT N S_g = ZT\ Sand ZT \ S = ZT N S and by
ind.-hyp one of these sets is finite.
@ FAG: Wehave ZT N Seag = (ZT N Sg) N (ZT N Sg) and
7+ \ SFrc = (Z+ \ SF) U (Z+ \ S¢)-
If the latter set is not finite then one of Z™ N Sg or ZT N Sg is finite.

In both cases ZT N Spac is finite.
4
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 150 / 414

No QE for Ty §

Given quantifier-free Xz-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tgz-valid} .

Either Z+ N Sg or Z* \ Sk is finite.

where 7 is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for
-F,FANGFVG,F— G F <+ G.

@ F V G follows from previous, since Spyg = Sﬁ(ﬁ,_—/\ﬁc).

e F — G follows from S¢_,¢ = S-rvg)-

e F < G follows from 5[:(_}(; = S(FHG)/\(GHF)'

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 151 / 414

No QE for Ty g

Given quantifier-free Xz-formula F s.t. free(F) = {y}. Let
Se: {neZ : F{y — n}is Tg-valid} .

Either Z+ N Sg or Zt \ Sk is finite.

where 7" is the set of positive integers

Yy-formula F : dx.2x = y (with quantifier)
Sr: even integers
Z+ N Sg: positive even integers — infinite
Z* \ Sg: positive odd integers — infinite
Therefore, by the lemma, there is no quantifier-free Tz-formula that is
Tz-equivalent to F.
Thus, Tz does not admit QE.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 152 / 414

Augmented theory Tz g

i\Z: > 7 with countable number of unary divisibility predicates
1z U {1|7 2|7 3|a s }
Intended interpretations:

k | x holds iff k divides x without any remainder

Axioms of ?\Z: axioms of Ty with additional countable set of axioms

Vx. k| x < Jy.x = ky fork € Z*

Example:
x>1ANy>1A2|x+y

is satisfiable (choose x = 2,y = 2).
(2] x) N4 | x

is not satisfiable.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 153 / 414

Tz admits QE (Cooper’'s method) g

Algorithm: Given ¥-formula 3x. F[x], where F is quantifier-free
Construct quantifier-free ¥z-formula that is equivalent to 3Ix. F[x].

@ Put F[x] into Negation Normal Form (NNF).

@ Normalize literals: s < t, k|t, or =(k|t).

© Putxins < tononeside: hx < tors < hx.
@ Replace hx with x” without a factor.

© Replace F[x'] by \/ F[J] for finitely many j.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 154 / 414

Cooper’'s Method: Step 1 g

Put F[x] in NNF Fi[x], that is,
Ix. F1[x] has negations only in literals (only A, V)
and Tz-equivalent to 3x. F[x]

Example:

Ix.a(x —6<z—xA4]|5x+1—=3x <y)
is equivalent to

Ix. Bx < y)Ax—6<z—-—xAN4|5x+1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 155 / 414

Cooper’'s Method: Step 2

Replace (left to right)

t & s<t+1lAt<s+1
(s=1t) & s<tVit<s
() & t<s+1
The output Ix. Fp[x] contains only literals of form
s<t, k|t, o =(k]|t),

where s, t are Ty-terms and k € Z7T.

Example:

Ix. Bx < y)Ax—6<z—-—xAN4|5x+1
is equivalent to

.y <3x+1Ax—-6<z—xA4|bx+1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

156 / 414

Cooper’'s Method: Step 3 &

Collect terms containing x so that literals have the form
hx <t, t<hx, k|hx+t, or —=(k|hx+1t),

where t is a term and h, k € Z*. The output is the formula Ix. F3[x],
which is Tz-equivalent to Ix. F[x].

Example:

Ix.y <3x+1Ax—-6<z—-—xAN4|bx+1
is equivalent to

Ix.y —1<3xA2x<z4+6AN4]5x+1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 157 / 414

Cooper’'s Method: Step 4

Let

d = lem{h

where lcm is the least common multiple. Multiply atoms in F3[x] by

h is a coefficient of x in F3[x]} ,

constants so that ¢ is the coefficient of x everywhere:

hx < t

t < hx
k| hx +t
—(k | hx + t)

=
=
=
=

ox < H't

ht < x

Wk |ox + H't
—(hk | ox + H't)

where hh =4
where h'h =4
where hHh =4
where h'h =4

The result 3x. F5[x], in which all occurrences of x in Fj[x] are in terms dx.

Replace dx terms in F} with a fresh variable x’ to form
F{ : F3{ox — X'}

Jochen Hoenicke (Software Engineering)

Decision Procedures

Winter Term 2015/16

158 / 414

Cooper’'s Method: Step 4 contd. &

Finally, construct
Ix'. FYXT A6 X
[—
Fa[x"]

Ix".F4[x'] is equivalent to Ix. F[x] and each literal of F4[x’] has one of
the forms:

)

)
(C) k| x +t
(D) ~(k [X"+ 1)
where t is a term that does not contain x, and k € Z™.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 159 / 414

Cooper's Method: Step 4 (Example) 2

Example: @—formula
Wx. 2x <z+6ANy—1<3xAN4|5x+1

Fs[x]
Collecting coefficients of x:
0 = lem(2,3,5) = 30
Multiply when necessary
Ix. 30x < 15z + 90 A 10y — 10 < 30x A 24| 30x + 6
Replacing 30x with fresh x’
Ix. X' < 152+90 A 10y —10 < X A 24| x +6 A 30| X

Falx']

Ax’. F4[x] is equivalent to Ix. F3[x]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 160 / 414

Cooper’'s Method: Result of Step 4 2

Ix’.F4[x'] is equivalent to Ix. F[x] and each literal of F4[x] has one of
the forms:

(A) X' <t
(B) t < X
(C) k| x +t

(D) =(k | x" +t)
where t is a term that does not contain x, and k € ZT.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 161 / 414

Cooper’'s Method: Step 5

Construct
left infinite projection F_[x']
of F4[x'] by
(A) replacing literals x’ < t by T
(B) replacing literals t < x’ by L
idea: very small numbers satisfy (A) literals but not (B) literals

Let
k of (C) literals k | x + t
d = lcm . ,
k of (D) literals =(k | x" + t)

and B be the set of terms t appearing in (B) literals. Construct

\/ F_[j] Vv \/ \/ Falt + Jj] -

j=1teB

Fs is quantifier-free and ?Z—equivalent to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

162 / 414

Cooper's Method: Step 5 (Example) 2

Ix'. X' < 152+ 90 A 10y — 10 < x' A 24|x + 6 A 30| x

Fa[x']
Compute lem: § = lcm(24,30) = 120
Then
120
Fs = \/ T ALA24[j+6A30]j
j=1
120
v \/10y =10+ < 152+ 90 A 10y — 10 < 10y — 10 +
j=1

A 24]10y — 10 +j + 6 A 30|10y — 10 +

The formula can be simplified to:

120
Fs = \/ 10y — 10 + j < 15z + 90 A 24|10y — 10 + j + 6 A 30|10y — 10 + j
j=1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 163 / 414

Correctness of Step 5 2

Let Fs be the formula constructed from 3x’. F4[x'] as in Step 5. Then
3x’. F4[X/] < Fs.

LemmalPeriodicity|: For all atoms k | x' 4+ t in F4, we have k | 0.
Therefore, k | X' + tiff k | x' + Xd + t for all X\ € Z.

Proof of Theorem

< If Fs is true, there are two cases: F_o.[j] is true or F4[t + j] is true.

If Falt + j] is true, than obviously 3x'. F4[x] is true. If F_o[j] is
true, then (due to periodicity) F_o[j + A - d] is true.
IfA < t—1forallt € AU B, then
J+A- 0 <5+ (t—1)0 = 6t < t. Thus,

F oolj + X 0] & Rl[j+ X6 = 3X. FilX].

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 164 / 414

Correctness of Step 5

= Assume for some x’, F4[x'] is true. If =(t < x’) for all t € B, then
choose j € {1,...,8} such that 6 | (jxr — x’). jxr will satisfy all (C)
and (D) literals that x’ satisfies. x’ does not satisfy any (B) literal.
Therefore if F4[x'] is true, F_oo[j] must be true. Therefore Fs is true.
If t < x' for some t € B, then let

te = max{t € B|t < x'}

and choose j,» € {1,...,0} such that 6 |[(t« + jx — x'). We claim
that Fa[te + Jji] is true.

Since x' = ty + jiv + A, x” and t + Jjy satisfy the same (C) and
(D) literals (due to periodicity).

Since ty + ju > te = max{t € B|t < X'}, tu + j satisfies all
(B) literals that are satisfied by x’.

Since ty < X' = tw + jx + M <t + (A + 1)d, we conclude that

A > 0. Hence, X' > ty + jx and ty + j satisfies all (A) literals
satisfied by x’.
Thus Faftx + j.] is true. Therefore, Fs is true.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

165 / 414

Cooper’'s Method: Step 5

Construct

left infinite projection F_o[x]
of Fa[x'] by

(A) replacing literals X' < t by T
(B) replacing literals t < x’ by L

Let

k of (D) literals —=(k | x' + t)
and B be the set of terms t appearing in (B) literals. Construct

H /
5:Icm{ k of (C) literals k | x + t }

\/F—oo[/] v \/ \/ Falt +J] .

j=1teB

Fs is quantifier-free and ?Z—equivalent to F.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16

166 / 414

Symmetric Elimination g

In step 5, if there are fewer
(A) literals X' < t
than
(B) literals t < x'.

Construct the right infinite projection Fi[x'] from F4[x’] by replacing
each (A) literal x < t by L

and
each (B) literal t < x" by T.

Then right elimination.

\/F+oo[J]\/\/\/F4t*J]

j=1teA

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 167 / 414

Symmetric Elimination (Example) -

Ix'. X' < 152+ 90 A 10y — 10 < x' A 24|x + 6 A 30| x

Fa[x']
Compute lem: § = lcm(24,30) = 120
Then
120
Fs=\/LATA24| —j+6A30] —j
j=1
120
v \/ 152 + 90 — j < 15z + 90 A 10y — 10 < 15z + 90 — j
j=1

A24[15z + 90 — j + 6 A 30|15z + 90 —

The formula can be simplified to:

120
Fs = \/ 10y — 10 < 152 + 90 — j A 24|15z + 90 — j + 6 A 30|15z + 90 — j
j=1

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 168 / 414

Example &

dx.(Bx+1<10V7x—6>7)A2|x

FIx]

Isolate x terms
Ix. Bx < 9VI3<TX)AN2 | x,

SO
§ = lem{3,7} = 21 .

After multiplying coefficients by proper constants,
dx. (21x < 63 vV 39 < 21x) A 42 | 21x
we replace 21x by x’:

Ix'. (X < 63V39 < x)AL2| X A21|X .

Fa[x"]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 169 / 414

Then
FooolX]T: (TV L)AL X A21|X,

or, simplifying,
Fooo[X]: 42X A21]X .
Finally,
d = lem{21,42} = 42 and B = {39},
S0
42
\V@2[jn21lj) v
=1
Fs: 42
V((39+j < 63V 39 <39+ j)A42[39+jA21[39+]).
j=1

Slnce 42 | 42 and 21 | 42, the left maln disjunct simplifies to T, so that F
is TZ-equwaIent to T. Thus, Fis TZ valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 170 / 414

Decision Procedures for Quantifier-free Fragments g

Quantifier elimination decides validity/satisfiable quantified formulae.

Can also be used for quantifier free formulae:

To decide satisfiability of F[xi, ..., xp],

apply QE on 3xy, ..., x5 F[x1,...,Xs].

But high complexity (doubly exponential for Tg).

Therefore, we are looking for a fast procedure.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2015/16 171 / 414

	Organisation
	Motivation
	Contents of Lecture
	Foundations: Propositional Logic
	Satisfiability and Validity
	Normal Forms
	DPLL

	First-Order Logic
	Satisfiability and Validity
	Normal Forms

	Theories
	Theory of Equality
	T-Validity and T-Satisfiability
	Natural Numbers and Integers
	Rationals and Reals
	Recursive Data Structures
	Arrays
	Combination of Theories
	Decidability

	Quantifier Elimination
	Rationals: Ferrante and Rackoff
	Integers: Cooper's Method

	Quantifier-free Rationals
	Dutertre–de Moura Algorithm
	Termination
	Strict Bounds

	Quantifier-free Theory of Equality
	Congruence Closure Algorithm

	Theory of Lists
	Theory of Arrays
	Array Property Fragment

	Theory of Integer-Indexed Arrays
	Nelson-Oppen Theory Combination
	DPLL(T)
	Program Correctness
	Total Correctness

	Craig Interpolation
	Conclusion

