Decision Procedures

Jochen Hoenicke

Software Engineering
\(-\frac{\stackrel{y}{2}}{\substack{品
른}}\)
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Quantifier Elimination

Quantifier Elimination

Quantifier Elimination (QE) removes quantifiers from formulae:

- Given a formula with quantifiers, e.g., $\exists x . F[x, y, z]$.
- Goal: find an equivalent quantifier-free formula $G[y, z]$.
- The free variables of F and G are the same.

$$
\exists x . F[x, y, z] \Leftrightarrow G[y, z]
$$

QE as Decision Procedure

Decide satisfiabilty for a formula F, e.g. in $T_{\mathbb{Q}}$, using quantifier elimination:

- Given a formula F, with free variable x_{1}, \ldots, x_{n}.
- Build $\exists x_{1} \ldots \exists x_{n} . F$.
- Build equivalent quantifier free formula G. G contains only constants, functions and predicates i.e. $0,1,+,-, \geq,=$.
- Compute truth value of G.

QE algorithm

In developing a QE algorithm for theory T, we need only consider formulâe of the form

```
\existsx.F
```

for quantifier-free F
Example: For Σ-formula

$$
\begin{aligned}
& G_{1}: \exists x . \forall y \cdot \underbrace{\exists z . F_{1}[x, y, z]}_{F_{2}[x, y]} \\
& G_{2}: \exists x \cdot \forall y \cdot F_{2}[x, y] \\
& G_{3}: \exists x \cdot \neg \underbrace{\exists y . \neg F_{2}[x, y]}_{F_{3}[x]} \\
& G_{4}: \underbrace{\exists x . \neg F_{3}[x]}_{F_{4}} \\
& G_{5}: F_{4}
\end{aligned}
$$

G_{5} is quantifier-free and T-equivalent to G_{1}

Syntactic sugar for Rationals

Consider the Signature of Rationals: $\quad \Sigma_{\mathbb{Q}}:\{0,1,+,-,=, \geq\}$
We extend the signature with the predicate $>$, which is defined as

$$
x>y: \Leftrightarrow x \geq y \wedge \neg(x=y) .
$$

Additionally we allow predicates $<$ and \leq :

$$
x<y: \Leftrightarrow y>x \quad x \leq y: \Leftrightarrow y \geq x
$$

We extend the signature by fractions:

$$
\dot{a} \in \Sigma_{\mathbb{Q}} \text { for } a \in \mathbb{Z}^{+}
$$

which are unary function symbols, with their usual meaning.

Ferrante and Rackoff's Method

Given a $\Sigma_{\mathbb{Q}}$-formula $\exists x . F[x]$, where $F[x]$ is quantifier-free Generate quantifier-free formula F_{4} (four steps) s.t.
F_{4} is $\Sigma_{\mathbb{Q}}$-equivalent to $\exists x . F[x]$.
(1) Put $F[x]$ in NNF.
(2) Eliminate negated literals.
(3) Solve the literals s.t. x appears isolated on one side.
(9) Finite disjunction $\bigvee_{t \in S_{F}} F[t]$.

$$
\exists x . F[x] \Leftrightarrow \bigvee_{t \in S_{F}} F[t] .
$$

where S_{F} depends on the formula F.

Step 1 and 2

Step 1: Put $F[x]$ in NNF. The result is $\exists x . F_{1}[x]$.
Step 2: Eliminate negated literals and \geq (left to right)

$$
\begin{aligned}
s \geq t & \Leftrightarrow s>t \vee s=t \\
\neg(s>t) & \Leftrightarrow t>s \vee t=s \\
\neg(s \geq t) & \Leftrightarrow t>s \\
\neg(s=t) & \Leftrightarrow t<s \vee t>s
\end{aligned}
$$

The result $\exists x . F_{2}[x]$ does not contain negations.

Step 3

Solve for x in each atom of $F_{2}[x]$, e.g.,

$$
a x+t_{2}<b x+t_{1} \quad \Rightarrow \quad x<\frac{t_{1}-t_{2}}{a-b}
$$

where $a-b \in \mathbb{Z}^{+}$.
All atoms containing x in the result $\exists x . F_{3}[x]$ have form
(A) $x<t$
(B) $t<x$
(C) $x=t$
where t is a term that does not contain x.

Step 4 (Part 1)

Construct from $F_{3}[x]$

- left infinite projection $F_{3}[-\infty]$ by replacing
(A) atoms $x<t$ by \top
(B) atoms $t<x$ by \perp
(C) atoms $x=t$ by \perp
- right infinite projection $F_{3}[+\infty]$ by replacing
(A) atoms $x<t$ by \perp
(B) atoms $t<x$ by \top
(C) atoms $x=t$ by \perp

Step 4 (Part 2)

Let S be the set of terms t from (A), (B), (C) atoms.
Construct the formula

$$
F_{4}: \bigvee_{t \in S_{F}} F_{3}[t], \quad \text { where } S_{F}:=\{-\infty, \infty\} \cup\left\{\left.\frac{s+t}{2} \right\rvert\, s, t \in S\right\}
$$

which is $T_{\mathbb{Q}}$-equivalent to $\exists x . F[x]$.

- $F_{3}[-\infty]$ captures the case when small $x \in \mathbb{Q}$ satisfy $F_{3}[x]$
- $F_{3}[-\infty]$ captures the case when large $x \in \mathbb{Q}$ satisfy $F_{3}[x]$
- if $s \equiv t, \frac{s+t}{2}=s$ captures the case when $s \in S$ satisfies $F_{3}[s]$ if $s<t$ are adjacent numbers, $\frac{s+t}{2}$ represents the whole interval (s, t).

Intuition

Four cases are possible:
(1) All numbers x smaller than the smallest term satisfy $F[x]$.

$$
\longleftarrow) t_{1} t_{2} \cdots t_{n}
$$

(2) All numbers x larger than the largest term satisfy $F[x]$.

$$
t_{1} t_{2} \cdots t_{n}(\longrightarrow
$$

(3) Some t_{i}, satisfies $F[x]$.

$$
\begin{array}{llll}
t_{1} & \cdots & t_{i} \cdots & t_{n} \\
& \uparrow & &
\end{array}
$$

(9) On an open interval between two terms every element satisfies $F[x]$.

$$
\left.t_{1} \cdots \quad t_{i} \underset{\frac{t_{i}+t_{i+1}}{2}}{\longleftrightarrow}\right) t_{i+1} \cdots t_{n}
$$

Correctness of Step 4

Theorem

Let S_{F} be the set of terms constructed from $F_{3}[x]$ as in Step 4. Then $\exists x . F_{3}[x] \Leftrightarrow \bigvee_{t \in S_{F}} F_{3}[t]$.

Proof of Theorem

\Leftarrow If $\bigvee_{t \in S_{F}} F_{3}[t]$ is true, then $F_{3}[t]$ for some $t \in S_{F}$ is true.
If $F_{3}\left[\frac{s+t}{2}\right]$ is true, then obviously $\exists x . F_{3}[x]$ is true.
If $F_{3}[-\infty]$ is true, choose some $x<t$ for all $t \in S$. Then $F_{3}[x]$ is true.
If $F_{3}[\infty]$ is true, choose some $x>t$ for all $t \in S$. Then $F_{3}[x]$ is true.

Correctness of Step 4

\Rightarrow If $I \vDash \exists x . F_{3}[x]$ then there is value v such that

$$
I \triangleleft\{x \mapsto \mathrm{v}\} \models F_{3}
$$

If $v<\alpha_{I}[t]$ for all $t \in S$, then $I \models F_{3}[-\infty]$.
If $\mathrm{v}>\alpha_{I}[t]$ for all $t \in S$, then $I \models F_{3}[\infty]$.
If $v=\alpha_{l}[t]$ for some $t \in S$, then $I \models F\left[\frac{t+t}{2}\right]$.
Otherwise choose largest $s \in S$ with $\alpha_{l}[s]<\mathrm{v}$ and smallest $t \in S$ with $\alpha_{l}[t]>\mathrm{v}$.
Since no atom of F_{3} can distinguish between values in interval (s, t), $F_{3}[v] \Leftrightarrow F_{3}\left[\frac{s+t}{2}\right]$. Hence, $I \models F\left[\frac{s+t}{2}\right]$.

In all cases $I \models \bigvee_{t \in S_{F}} F_{3}[t]$.

Example

$$
\exists x \cdot \underbrace{3 x+1<10 \wedge 7 x-6>7}_{F[x]}
$$

Solving for x

$$
\exists x \cdot \underbrace{x<3 \wedge x>\frac{13}{7}}_{F_{3}[x]}
$$

Step 4:

$$
F_{4}: \bigvee_{t \in S_{F}} \underbrace{\left(t<3 \wedge t>\frac{13}{7}\right)}_{F_{3}[t]}
$$

Example contd.

$$
\begin{gathered}
S_{F}=\left\{-\infty,+\infty, 3, \frac{13}{7}, \frac{3+\frac{13}{7}}{2}\right\} . \\
F_{3}[x]=x<3 \wedge x>13 / 7 \\
F_{-\infty} \Leftrightarrow \top \wedge \perp \Leftrightarrow \perp \quad F_{+\infty} \Leftrightarrow \perp \wedge \top \Leftrightarrow \perp \\
F_{3}[3] \perp \wedge \top \Leftrightarrow \perp \quad F_{3}\left[\frac{13}{7}\right] \Leftrightarrow \top \wedge \perp \Leftrightarrow \perp \\
F_{3}\left[\frac{\frac{13}{7}+3}{2}\right]: \frac{\frac{13}{7}+3}{2}<3 \wedge \frac{\frac{13}{7}+3}{2}>\frac{13}{7} \Leftrightarrow \top
\end{gathered}
$$

Thus, $F_{4}: \bigvee_{t \in S_{F}} F_{3}[t] \Leftrightarrow T$ is $T_{\mathbb{Q}}$-equivalent to $\exists x . F[x]$, so $\exists x . F[x]$ is $T_{\mathbb{Q}}$-valid.

Example

$$
\exists x \cdot \underbrace{2 x>y \wedge 3 x<z}_{F[x]}
$$

Solving for x

$$
\exists x . \underbrace{x>\frac{y}{2} \wedge x<\frac{z}{3}}_{F_{3}[x]}
$$

Step 4: $F_{-\infty} \Leftrightarrow \perp, F_{+\infty} \Leftrightarrow \perp, F_{3}\left[\frac{y}{2}\right] \Leftrightarrow \perp$ and $F_{3}\left[\frac{z}{3}\right] \Leftrightarrow \perp$.

$$
F_{4}: \frac{\frac{y}{2}+\frac{z}{3}}{2}>\frac{y}{2} \wedge \frac{\frac{y}{2}+\frac{z}{3}}{2}<\frac{z}{3}
$$

which simplifies to:

$$
F_{4}: 2 z>3 y
$$

Quantifier Elimination for $T_{\mathbb{Z}}$

$\Sigma_{\mathbb{Z}}:\{\ldots,-2,-1,0,1,2, \ldots,-3 \cdot,-2 \cdot, 2 \cdot 3 \cdot, \ldots,+,-,=,<\}$
Consider the formula

$$
F: \exists x .2 x=y
$$

Which quantifier free formula $G[y]$ is equivalent to F ?
There is no such formula!

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let

$$
S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\} \text { is } T_{\mathbb{Z}} \text {-valid }\right\}
$$

Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Proof (Structural Induction over F)

Base case: F is an atomic formula:
$\top, \perp, t_{1}=t_{2}, a \cdot y=t, t_{1}<t_{2}, a \cdot y<t$.

- $\mathbb{Z}^{+} \backslash S_{\top}=\mathbb{Z}^{+} \cap S_{\perp}=\emptyset$ is finite
- $S_{t_{1}=t_{2}}$ and $S_{t_{1}<t_{2}}$ are either S_{\top} or S_{\perp}.
- $\mathbb{Z}^{+} \cap S_{a \cdot y=t},(a \neq 0)$ has at most one element.
- $\mathbb{Z}^{+} \cap S_{a \cdot y<t}, a>0$ is finite.
- $\mathbb{Z}^{+} \backslash S_{a \cdot y<t}, a<0$ is finite.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let

$$
S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\} \text { is } T_{\mathbb{Z}} \text {-valid }\right\}
$$

Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for $\neg F, F \wedge G, F \vee G, F \rightarrow G, F \leftrightarrow G$.

- $\neg F$: We have $\mathbb{Z}^{+} \cap S_{\neg F}=\mathbb{Z}^{+} \backslash S$ and $\mathbb{Z}^{+} \backslash S_{\neg F}=\mathbb{Z}^{+} \cap S$ and by ind.-hyp one of these sets is finite.
- $F \wedge G:$ We have $\mathbb{Z}^{+} \cap S_{F \wedge G}=\left(\mathbb{Z}^{+} \cap S_{F}\right) \cap\left(\mathbb{Z}^{+} \cap S_{G}\right)$ and $\mathbb{Z}^{+} \backslash S_{F \wedge G}=\left(\mathbb{Z}^{+} \backslash S_{F}\right) \cup\left(\mathbb{Z}^{+} \backslash S_{G}\right)$.
If the latter set is not finite then one of $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \cap S_{G}$ is finite. In both cases $\mathbb{Z}^{+} \cap S_{F \wedge G}$ is finite.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let $S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\}\right.$ is $T_{\mathbb{Z}}$-valid $\}$.
Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite. where \mathbb{Z}^{+}is the set of positive integers

Proof (Structural Induction over F)

Induction step: Assume property holds for F, G. Show it for $\neg F, F \wedge G, F \vee G, F \rightarrow G, F \leftrightarrow G$.

- $F \vee G$ follows from previous, since $S_{F \vee G}=S_{\neg(\neg F \wedge \neg G)}$.
- $F \rightarrow G$ follows from $S_{F \rightarrow G}=S_{(\neg F \vee G)}$.
- $F \leftrightarrow G$ follows from $S_{F \leftrightarrow G}=S_{(F \rightarrow G) \wedge(G \rightarrow F)}$.

No QE for $T_{\mathbb{Z}}$

Lemma

Given quantifier-free $\Sigma_{\mathbb{Z}}$-formula F s.t. free $(F)=\{y\}$. Let $S_{F}:\left\{n \in \mathbb{Z}: F\{y \mapsto n\}\right.$ is $T_{\mathbb{Z}}$-valid $\}$.
Either $\mathbb{Z}^{+} \cap S_{F}$ or $\mathbb{Z}^{+} \backslash S_{F}$ is finite.
where \mathbb{Z}^{+}is the set of positive integers
$\Sigma_{\mathbb{Z}}$-formula $\quad F: \exists x .2 x=y$ (with quantifier)
S_{F} : even integers
$\mathbb{Z}^{+} \cap S_{F}$: positive even integers - infinite
$\mathbb{Z}^{+} \backslash S_{F}$: positive odd integers - infinite
Therefore, by the lemma, there is no quantifier-free $T_{\mathbb{Z}}$-formula that is $T_{\mathbb{Z}}$-equivalent to F.
Thus, $T_{\mathbb{Z}}$ does not admit QE .

Augmented theory $\widehat{T_{\mathbb{Z}}}$

$\widehat{\Sigma_{\mathbb{Z}}}: \Sigma_{\mathbb{Z}}$ with countable number of unary divisibility predicates

$$
\Sigma_{\mathbb{Z}} \cup\{1|\cdot, 2| \cdot, 3 \mid \cdot, \ldots\}
$$

Intended interpretations:
$k \mid x$ holds iff k divides x without any remainder
Axioms of $\widehat{T_{\mathbb{Z}}}$: axioms of $T_{\mathbb{Z}}$ with additional countable set of axioms

$$
\forall x . k \mid x \leftrightarrow \exists y . x=k y \quad \text { for } k \in \mathbb{Z}^{+}
$$

Example:

$$
x>1 \wedge y>1 \wedge 2 \mid x+y
$$

is satisfiable (choose $x=2, y=2$).
$\neg(2 \mid x) \wedge 4 \mid x$
is not satisfiable.

$\widehat{T_{\mathbb{Z}}}$ admits QE (Cooper's method)

Algorithm: Given $\widehat{\Sigma_{\mathbb{Z}}}$-formula $\exists x . F[x]$, where F is quantifier-free

(1) Put F[x] into Negation Normal Form (NNF).
(2) Normalize literals: $s<t, k \mid t$, or $\neg(k \mid t)$.
(3) Put x in $s<t$ on one side: $h x<t$ or $s<h x$.
(1) Replace $h x$ with x^{\prime} without a factor.
(5) Replace $F\left[x^{\prime}\right]$ by $\bigvee F[j]$ for finitely many j.

Cooper's Method: Step 1

Put $F[x]$ in NNF $F_{1}[x]$, that is, $\exists x . F_{1}[x]$ has negations only in literals (only \wedge, \vee) and $\widehat{T_{\mathbb{Z}}}$-equivalent to $\exists x . F[x]$

Example:

$$
\exists x . \neg(x-6<z-x \wedge 4 \mid 5 x+1 \rightarrow 3 x<y)
$$

is equivalent to

$$
\exists x . \neg(3 x<y) \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

Cooper's Method: Step 2

Replace (left to right)

$$
\begin{aligned}
s=t & \Leftrightarrow s<t+1 \wedge t<s+1 \\
\neg(s=t) & \Leftrightarrow s<t \vee t<s \\
\neg(s<t) & \Leftrightarrow t<s+1
\end{aligned}
$$

The output $\exists x . F_{2}[x]$ contains only literals of form

$$
s<t, \quad k \mid t, \quad \text { or } \quad \neg(k \mid t)
$$

where s, t are $\widehat{T_{\mathbb{Z}}}$-terms and $k \in \mathbb{Z}^{+}$.
Example:

$$
\exists x . \neg(3 x<y) \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

is equivalent to

$$
\exists x . y<3 x+1 \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

Cooper's Method: Step 3

Collect terms containing x so that literals have the form

$$
h x<t, \quad t<h x, \quad k \mid h x+t, \quad \text { or } \quad \neg(k \mid h x+t)
$$

where t is a term and $h, k \in \mathbb{Z}^{+}$. The output is the formula $\exists x . F_{3}[x]$, which is $\widehat{T_{\mathbb{Z}}}$-equivalent to $\exists x . F[x]$.

Example:

$$
\exists x . y<3 x+1 \wedge x-6<z-x \wedge 4 \mid 5 x+1
$$

is equivalent to

$$
\exists x . y-1<3 x \wedge 2 x<z+6 \wedge 4 \mid 5 x+1
$$

Cooper's Method: Step 4

Let

$$
\delta=\operatorname{lcm}\left\{h: h \text { is a coefficient of } x \text { in } F_{3}[x]\right\}
$$

where Icm is the least common multiple. Multiply atoms in $F_{3}[x]$ by constants so that δ is the coefficient of x everywhere:

$$
\begin{array}{rlrl}
h x<t & \Leftrightarrow \delta x<h^{\prime} t & \text { where } h^{\prime} h=\delta \\
t<h x & \Leftrightarrow h^{\prime} t<\delta x & \text { where } \quad h^{\prime} h=\delta \\
k \mid h x+t & \Leftrightarrow h^{\prime} k \mid \delta x+h^{\prime} t & \text { where } \quad h^{\prime} h=\delta \\
\neg(k \mid h x+t) & \Leftrightarrow \neg\left(h^{\prime} k \mid \delta x+h^{\prime} t\right) & \text { where } & h^{\prime} h=\delta
\end{array}
$$

The result $\exists x . F_{3}^{\prime}[x]$, in which all occurrences of x in $F_{3}^{\prime}[x]$ are in terms δx.
Replace δx terms in F_{3}^{\prime} with a fresh variable x^{\prime} to form

$$
F_{3}^{\prime \prime}: F_{3}\left\{\delta x \mapsto x^{\prime}\right\}
$$

Cooper's Method: Step 4 contd.

Finally, construct

$$
\exists x^{\prime} \cdot \underbrace{F_{3}^{\prime \prime}\left[x^{\prime}\right] \wedge \delta \mid x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F[x]$ and each literal of $F_{4}\left[x^{\prime}\right]$ has one of the forms:
(A) $x^{\prime}<t$
(B) $t<x^{\prime}$
(C) $k \mid x^{\prime}+t$
(D) $\neg\left(k \mid x^{\prime}+t\right)$
where t is a term that does not contain x, and $k \in \mathbb{Z}^{+}$.

Cooper's Method: Step 4 (Example)

Example: $\widehat{T_{\mathbb{Z}}}$-formula

Collecting coefficients of x :

$$
\delta=\operatorname{lcm}(2,3,5)=30
$$

Multiply when necessary

$$
\exists x .30 x<15 z+90 \wedge 10 y-10<30 x \wedge 24 \mid 30 x+6
$$

Replacing $30 x$ with fresh x^{\prime}

$$
\exists x^{\prime} \cdot \underbrace{x^{\prime}<15 z+90 \wedge 10 y-10<x^{\prime} \wedge 24\left|x^{\prime}+6 \wedge 30\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F_{3}[x]$

Cooper's Method: Result of Step 4

$\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is equivalent to $\exists x . F[x]$ and each literal of $F_{4}\left[x^{\prime}\right]$ has one of the forms:
(A) $x^{\prime}<t$
(B) $t<x^{\prime}$
(C) $k \mid x^{\prime}+t$
(D) $\neg\left(k \mid x^{\prime}+t\right)$
where t is a term that does not contain x, and $k \in \mathbb{Z}^{+}$.

Cooper's Method: Step 5

Construct

left infinite projection $F_{-\infty}\left[x^{\prime}\right]$
of $F_{4}\left[x^{\prime}\right]$ by
(A) replacing literals $x^{\prime}<t$ by \top
(B) replacing literals $t<x^{\prime}$ by \perp
idea: very small numbers satisfy (A) literals but not (B) literals
Let

$$
\delta=\operatorname{Icm}\left\{\begin{array}{l}
k \text { of }(C) \text { literals } k \mid x^{\prime}+t \\
k \text { of }(D) \text { literals } \neg\left(k \mid x^{\prime}+t\right)
\end{array}\right\}
$$

and B be the set of terms t appearing in (B) literals. Construct

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_{4}[t+j]
$$

F_{5} is quantifier-free and $\widehat{T_{\mathbb{Z}}}$-equivalent to F.

Cooper's Method: Step 5 (Example)

$$
\exists x^{\prime} \cdot \underbrace{x^{\prime}<15 z+90 \wedge 10 y-10<x^{\prime} \wedge 24\left|x^{\prime}+6 \wedge 30\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

Compute Icm: $\delta=\operatorname{Icm}(24,30)=120$
Then

$$
\begin{aligned}
F_{5}= & \bigvee_{j=1}^{120} \top \wedge \perp \wedge 24|j+6 \wedge 30| j \\
& \vee \bigvee_{j=1}^{120} 10 y-10+j<15 z+90 \wedge 10 y-10<10 y-10+j \\
& \wedge 24|10 y-10+j+6 \wedge 30| 10 y-10+j
\end{aligned}
$$

The formula can be simplified to:

$$
F_{5}=\bigvee_{j=1}^{120} 10 y-10+j<15 z+90 \wedge 24|10 y-10+j+6 \wedge 30| 10 y-10+j
$$

Correctness of Step 5

Theorem

Let F_{5} be the formula constructed from $\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ as in Step 5. Then $\exists x^{\prime} . F_{4}\left[x^{\prime}\right] \Leftrightarrow F_{5}$.

Lemma[Periodicity]: For all atoms $k \mid x^{\prime}+t$ in F_{4}, we have $k \mid \delta$.
Therefore, $k \mid x^{\prime}+t$ iff $k \mid x^{\prime}+\lambda \delta+t$ for all $\lambda \in \mathbb{Z}$.
Proof of Theorem
\Leftarrow If F_{5} is true, there are two cases: $F_{-\infty}[j]$ is true or $F_{4}[t+j]$ is true. If $F_{4}[t+j]$ is true, than obviously $\exists x^{\prime} . F_{4}\left[x^{\prime}\right]$ is true. If $F_{-\infty}[j]$ is true, then (due to periodicity) $F_{-\infty}[j+\lambda \cdot \delta]$ is true.
If $\lambda<t-1$ for all $t \in A \cup B$, then $j+\lambda \cdot \delta<\delta+(t-1) \delta=\delta t \leq t$. Thus,

$$
F_{-\infty}[j+\lambda \cdot \delta] \Leftrightarrow F_{4}[j+\lambda \cdot \delta] \Rightarrow \exists x^{\prime} . F_{4}\left[x^{\prime}\right] .
$$

Correctness of Step 5

\Rightarrow Assume for some $x^{\prime}, F_{4}\left[x^{\prime}\right]$ is true. If $\neg\left(t<x^{\prime}\right)$ for all $t \in B$, then choose $j_{x^{\prime}} \in\{1, \ldots, \delta\}$ such that $\delta \mid\left(j_{x^{\prime}}-x^{\prime}\right)$. $j_{x^{\prime}}$ will satisfy all (C) and (D) literals that x^{\prime} satisfies. x^{\prime} does not satisfy any (B) literal. Therefore if $F_{4}\left[x^{\prime}\right]$ is true, $F_{-\infty}[j]$ must be true. Therefore F_{5} is true. If $t<x^{\prime}$ for some $t \in B$, then let

$$
t_{x^{\prime}}=\max \left\{t \in B \mid t<x^{\prime}\right\}
$$

and choose $j_{x^{\prime}} \in\{1, \ldots, \delta\}$ such that $\delta \mid\left(t_{x^{\prime}}+j_{x^{\prime}}-x^{\prime}\right)$. We claim that $F_{4}\left[t_{x^{\prime}}+j_{x^{\prime}}\right]$ is true.
Since $x^{\prime}=t_{x^{\prime}}+j_{x^{\prime}}+\lambda \delta, x^{\prime}$ and $t_{x^{\prime}}+j_{x^{\prime}}$ satisfy the same (C) and (D) literals (due to periodicity).

Since $t_{x^{\prime}}+j_{x^{\prime}}>t_{x^{\prime}}=\max \left\{t \in B \mid t<x^{\prime}\right\}, t_{x^{\prime}}+j_{x^{\prime}}$ satisfies all (B) literals that are satisfied by x^{\prime}.

Since $t_{x^{\prime}}<x^{\prime}=t_{x^{\prime}}+j_{x^{\prime}}+\lambda \delta \leq t_{x^{\prime}}+(\lambda+1) \delta$, we conclude that $\lambda \geq 0$. Hence, $x^{\prime} \geq t_{x^{\prime}}+j_{x^{\prime}}$ and $t_{x^{\prime}}+j_{x^{\prime}}$ satisfies all (A) literals satisfied by x^{\prime}.
Thus $F_{4}\left[t_{x}+j_{x}^{\prime}\right]$ is true. Therefore, F_{5} is true.

Cooper's Method: Step 5

Construct

left infinite projection $F_{-\infty}\left[x^{\prime}\right]$
of $F_{4}\left[x^{\prime}\right]$ by
(A) replacing literals $x^{\prime}<t$ by \top
(B) replacing literals $t<x^{\prime}$ by \perp

Let

$$
\delta=\operatorname{Icm}\left\{\begin{array}{l}
k \text { of }(C) \text { literals } k \mid x^{\prime}+t \\
k \text { of (D) literals } \neg\left(k \mid x^{\prime}+t\right)
\end{array}\right\}
$$

and B be the set of terms t appearing in (B) literals. Construct

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{-\infty}[j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in B} F_{4}[t+j]
$$

F_{5} is quantifier-free and $\widehat{T_{\mathbb{Z}}}$-equivalent to F.

Symmetric Elimination

In step 5, if there are fewer
(A) literals $x^{\prime}<t$
than
(B) literals $t<x^{\prime}$.

Construct the right infinite projection $F_{+\infty}\left[x^{\prime}\right]$ from $F_{4}\left[x^{\prime}\right]$ by replacing each (A) literal $x^{\prime}<t$ by \perp
and

$$
\text { each (B) literal } t<x^{\prime} \text { by } T \text {. }
$$

Then right elimination.

$$
F_{5}: \bigvee_{j=1}^{\delta} F_{+\infty}[-j] \vee \bigvee_{j=1}^{\delta} \bigvee_{t \in A} F_{4}[t-j]
$$

Symmetric Elimination (Example)

$$
\exists x^{\prime} \cdot \underbrace{x^{\prime}<15 z+90 \wedge 10 y-10<x^{\prime} \wedge 24\left|x^{\prime}+6 \wedge 30\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

Compute Icm: $\delta=\operatorname{Icm}(24,30)=120$
Then

$$
\begin{aligned}
F_{5}= & \bigvee_{j=1}^{120} \perp \wedge \top \wedge 24|-j+6 \wedge 30|-j \\
& \vee \bigvee_{j=1}^{120} 15 z+90-j<15 z+90 \wedge 10 y-10<15 z+90-j \\
& \wedge 24|15 z+90-j+6 \wedge 30| 15 z+90-j
\end{aligned}
$$

The formula can be simplified to:

$$
F_{5}=\bigvee_{j=1}^{120} 10 y-10<15 z+90-j \wedge 24|15 z+90-j+6 \wedge 30| 15 z+90-j
$$

Example

$$
\underbrace{\exists x \cdot(3 x+1<10 \vee 7 x-6>7) \wedge 2 \mid x}_{F[x]}
$$

Isolate x terms

$$
\exists x .(3 x<9 \vee 13<7 x) \wedge 2 \mid x
$$

so

$$
\delta=\operatorname{lcm}\{3,7\}=21
$$

After multiplying coefficients by proper constants,

$$
\exists x .(21 x<63 \vee 39<21 x) \wedge 42 \mid 21 x
$$

we replace $21 x$ by x^{\prime} :

$$
\exists x^{\prime} \cdot \underbrace{\left(x^{\prime}<63 \vee 39<x^{\prime}\right) \wedge 42\left|x^{\prime} \wedge 21\right| x^{\prime}}_{F_{4}\left[x^{\prime}\right]}
$$

Then

$$
F_{-\infty}\left[x^{\prime}\right]:(T \vee \perp) \wedge 42\left|x^{\prime} \wedge 21\right| x^{\prime}
$$

or, simplifying,

$$
F_{-\infty}\left[x^{\prime}\right]: 42\left|x^{\prime} \wedge 21\right| x^{\prime}
$$

Finally,

$$
\delta=\operatorname{lcm}\{21,42\}=42 \quad \text { and } \quad B=\{39\}
$$

so

$$
F_{5}: \quad \bigvee_{j=1}^{42}(42|j \wedge 21| j) \vee 742
$$

Since $42 \mid 42$ and $21 \mid 42$, the left main disjunct simplifies to T, so that F is $\widehat{T_{\mathbb{Z}}}$-equivalent to T. Thus, F is $\widehat{T_{\mathbb{Z}}}$-valid.

Decision Procedures for Quantifier-free Fragments

Quantifier elimination decides validity/satisfiable quantified formulae.
Can also be used for quantifier free formulae:
To decide satisfiability of $F\left[x_{1}, \ldots, x_{n}\right]$,
apply QE on $\exists x_{1}, \ldots, x_{n} . F\left[x_{1}, \ldots, x_{n}\right]$.
But high complexity (doubly exponential for $T_{\mathbb{Q}}$).
Therefore, we are looking for a fast procedure.

