Decision Procedures

Jochen Hoenicke

Winter Term 2015/16

Quantifier-free Rationals

In the next lectures, we consider conjunctive quantifier-free Σ -formulae, i.e., conjunctions of Σ -literals (Σ -atoms or negations of Σ -atoms).

Remark 1: From this an algorithm for arbitrary quantifier-free formulae can be built.

For given arbitrary quantifier-free Σ -formula F, convert it into DNF Σ -formula

$$F_1 \vee \ldots \vee F_k$$

where each F_i conjunctive.

F is T-satisfiable iff at least one F_i is T-satisfiable.

Remark 2: One can also combine a decision procedure for conjunctive fragment with DPLL.

For $T_{\mathbb{Q}}$ a formula in the conjunctive fragment looks like this:

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq b_1$$
 $\land a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leq b_2$
 \vdots
 $\land a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m$
as vectors: $A \cdot \vec{x} \leq \vec{b}$.

Note: x = b can be expressed as $x \le b \land -x \le -b$. $\neg(x \le b)$ can be expressed as -x < -b. x < b requires some additional handling (later).

Dutertre-de Moura Algorithm

- Presented 2006 by B. Dutertre and L. de Moura
- Based on Simplex algorithm
- Simpler; it doesn't optimize.

The set of variables in the formula is called ${\cal N}$ (set of non-basic variables).

Additionally we introduce basic variables \mathcal{B} , one variable for each linear term in the formula:

$$y_i := a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n$$

The basic variables depend on the non-basic variables.

Note: The naming is counter-intuitive. Unfortunately it is the standard naming for Simplex algorithm.

We need to find a solution for $y_1 \leq b_1, \dots, y_m \leq b_m$

The basic variables can be computed by a simple Matrix computation:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

One can also use tableaux notation:

	x_1	 x_n
y_1	a ₁₁	 a_{1n}
÷	:	:
y_m	a_{m1}	 a_{mn}

We start by setting all non-basic to 0 and computing the basic variables, denoted as $\beta_0(x) := 0$. The valuation β_s assigns values for the variables at step s.

Configuration

A configuration at step s of the algorithm consists of

a partition of the variables into non-basic and basic variables

$$\mathcal{N}_s \cup \mathcal{B}_s = \{x_1, \ldots, x_n, y_1, \ldots y_m\},\$$

- a tableaux A (a $m \times n$ matrix) where the columns correspond to non-basic and rows correspond to basic variables,
- and a valuation β_s , that assigns
 - $\beta_s(x_i) = 0$ for $x_i \in \mathcal{N}_s$,
 - $\beta_s(y_i) = b_i$ for $y_i \in \mathcal{N}_s$,
 - $\beta_s(z_i) = \sum_{z_i \in \mathcal{N}_s} a_{ij} \beta(z_j)$ for $z_i \in \mathcal{B}_s$.

(Here z stands for either an x or a y variable.)

The initial configuration is:

$$\mathcal{N}_0 = \{x_1, \ldots, x_n\}, \mathcal{B}_0 = \{y_1, \ldots, y_m\}, A_0 = A, \beta_0(x_i) = 0$$

In later steps variables from ${\mathcal N}$ and ${\mathcal B}$ are swapped.

Pivoting aka. Exchanging Basic and Non-basic Variables

FREIBUR

Suppose β_s is not a solution for $y_1 \leq b_1, \ldots, y_m \leq b_m$. Let y_i be a variable whose value $\beta_s(y_i) > b_i$. Consider the row in the matrix:

$$y_i = a_{i1}z_1 + a_{i2}z_2 + \cdots + a_{in}z_n$$

Idea: Choose a z_j , then solve z_j in the above equation.

Thus, z_i becomes non-basic variable, y_i becomes basic.

Then decrease $\beta(y_i)$ to b_i .

This will either decrease z_i (if $a_{ii} > 0$)

or increase z_i (if $a_{ii} < 0$, z_i must be a x-variable).

Solving z_j in the above equation gives:

$$z_j = \frac{a_{i1}}{-a_{ij}}z_1 + \frac{a_{i2}}{-a_{ij}}z_2 + \cdots + \frac{a_{in}}{-a_{ij}}z_n + \frac{1}{a_{ij}}y_i$$

After pivoting y_i and z_i the matrix looks as follows:

$$y_{1} = (a_{11} - \frac{a_{1j}a_{i1}}{a_{ij}})z_{1} + \dots + \frac{a_{1j}}{a_{ij}}y_{i} + \dots + (a_{1n} - \frac{a_{1j}a_{in}}{a_{ij}})z_{n}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$z_{j} = -\frac{a_{i1}}{a_{ij}}z_{1} + \dots + \frac{1}{a_{ij}}y_{i} + \dots + -\frac{a_{in}}{a_{ij}}z_{n}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y_{m} = (a_{m1} - \frac{a_{mj}a_{i1}}{a_{ii}})z_{1} + \dots + \frac{a_{mj}}{a_{ij}}y_{i} + \dots + (a_{mn} - \frac{a_{mj}a_{in}}{a_{ij}})z_{n}$$

Now, set $\beta_{s+1}(y_i)$ to b_i and recompute basic variables.

We may arrive at a configuration like:

$$y_i = 0 \cdot x_1 + \cdots + a_{ij_1}y_{j_1} + \cdots + a_{ij_k}y_{j_k} + 0 \cdot x_n$$

where the non-basic y variables are set to their bound:

$$\beta_{s}(y_{j_1}) = b_{j_1}, \ldots, \beta_{s}(y_{j_k}) = b_{j_k},$$

coefficients of x variables are zero, coefficients $a_{ij_1}, \ldots, a_{ij_k} \leq 0$, and $\beta_s(y_i) > b_i$.

Then, we have a conflict:

$$y_{j_1} \leq b_{j_1} \wedge \cdots \wedge y_{j_k} \leq b_{j_k} \rightarrow y_i > b_i$$
.

The formula is not satisfiable.

Example

Consider the formula

$$F: x_1 + x_2 \geq 4 \wedge x_1 - x_2 \leq 1$$

We have two non-basic variables $\mathcal{N} = \{x_1, x_2\}.$

Define basic variables $\mathcal{B} = \{y_1, y_2\}$:

$$y_1 = -x_1 - x_2,$$
 $y_1 \le -4$
 $y_2 = x_1 - x_2,$ $y_2 \le 1$

We write the equation as a tableaux:

	<i>x</i> ₁	<i>X</i> ₂
<i>y</i> ₁	-1	-1
<i>y</i> 2	1	-1

Example (cont.)

Tableaux:

$$\begin{array}{c|cccc} & x_1 & x_2 \\ \hline y_1 & -1 & -1 \\ v_2 & 1 & -1 \end{array}$$

Values:

$$x_1 = x_2 = 0$$

 $\rightarrow y_1 = 0 > -4$ (!)
 $\rightarrow y_2 = 0 \le 1$

Pivot y_1 against x_1 : $x_1 = -y_1 - x_2$.

New Tableaux:

$$\begin{array}{c|cccc} & y_1 & x_2 \\ x_1 & -1 & -1 \\ y_2 & -1 & -2 \end{array}$$

Example (cont.)

$$\begin{array}{c|cccc} & y_1 & x_2 \\ x_1 & -1 & -1 \\ y_2 & -1 & -2 \end{array}$$

Values:

$$y_1 = -4, x_2 = 0$$

 $\rightarrow x_1 = 4$
 $\rightarrow y_2 = 4 > 1$ (!)

 y_2 cannot be pivoted with y_1 , since -1 negative. Pivot y_2 and x_2 :

New Tableaux:

$$\begin{array}{c|ccc}
 & y_1 & y_2 \\
x_1 & -.5 & .5 \\
x_2 & -.5 & -.5
\end{array}$$

$$\begin{array}{c|cc} & y_1 & y_2 \\ \hline x_1 & -.5 & .5 \\ x_2 & -.5 & -.5 \end{array}$$

Values:

$$y_1 = -4, y_2 = 1$$

 $\to x_1 = 2.5$
 $\to x_2 = 1.5$

We found a satisfying interpretation for:

$$F: x_1 + x_2 \ge 4 \land x_1 - x_2 \le 1$$

Example

Now, consider the formula

$$F': x_1 + x_2 \ge 4 \land x_1 - x_2 \le 1 \land x_2 \le 1$$

We have two non-basic variables $\mathcal{N} = \{x_1, x_2\}$.

Define basic variables $\mathcal{B} = \{y_1, y_2, y_3\}$:

$$y_1 = -x_1 - x_2,$$
 $y_1 \le -4$
 $y_2 = x_1 - x_2,$ $y_2 \le 1$
 $y_3 = x_2,$ $y_3 \le 1$

We write the equation as tableaux:

	<i>x</i> ₁	<i>x</i> ₂
<i>y</i> ₁	-1	-1
<i>y</i> ₂	1	-1
<i>y</i> ₃	0	1

Example (cont.)

The first two steps are identical: pivot y_1 resp. y_2 and x_1 resp. x_2 .

	<i>y</i> ₁	<i>y</i> ₂
x_1	5	.5
x_2	5	5
<i>y</i> ₃	5	5

Example (cont.)

$$\begin{array}{c|cccc} & y_1 & y_2 \\ \hline x_1 & -.5 & .5 \\ x_2 & -.5 & -.5 \\ y_3 & -.5 & -.5 \end{array}$$

Values:

$$y_1 = -4, y_2 = 1$$

 $\rightarrow x_1 = 2.5$
 $\rightarrow x_2 = 1.5$
 $\rightarrow y_3 = 1.5 > 1!$

Now, y_3 cannot pivot, since all coefficients in that row are negative. Conflict is $-x_1 - x_2 \le -4 \land x_1 - x_2 \le 1 \rightarrow x_2 > 1$.

Formula F' is unsatisfiable

Termination

To guarantee termination we need a fixed pivot selection rule.

The following rule works:

When choosing the basic variable (row) to pivot:

- Choose the *y*-variable with the smallest index, whose value exceeds the bound.
- If there is no such variable, return satisfiable

When choosing the non-basic variable (column) to pivot with:

- if possible, take a x-variable.
- Otherwise, take the *y*-variable with the smallest index, such that the corresponding coefficient in the matrix is positive.
- If there is no such variable, return unsatisfiable

Termination Proof

Assume we have an infinite computation of the algorithm.

Let y_j be the variable with the largest index, that is infinitely often pivoted. Look at the step where y_j is pivoted to a non-basic variable and where for k > j, y_k is not pivoted any more. The (ordered) tableaux at the point of pivoting looks like this:

	X	 X	У		У	Уj	У	
:							±/0	
y _i	0	 0	-/0		-/0	+	$\pm/0$	
:			,		,		,	
	ļ <u>.</u>			cc.				

(+ denotes a positive coefficient, - a negative coefficient)

After pivoting the tableaux changes to:

	X	• • •	X	У	• • •	У	Уi	У	• • •	
; <i>y_j</i> ;	0		0	+/0		+/0	+	=/0		

After pivoting the tableaux changes to:

$$\sum_{k < j, y_k \in \mathcal{N}_s} a_k b_k + \sum_{k > j, y_k \in \mathcal{N}_s} a_k b_k = \beta_s(y_j) < b_j, \text{ where } a_k \ge 0 \text{ for } k < j.$$

Now look at the step s' where y_i is pivoted back.

By the pivoting rule: $\beta_{s'}(y_k) \leq b_k$ for all k < j.

For k > j, the non-basic/basic variables do not change.

Therefore, the value of y_i can only get smaller.

$$\beta_{s'}(y_j) = \sum_{k < j, y_k \in \mathcal{N}_s} a_k \cdot \beta_{s'}(y_k) + \sum_{k > j, y_k \in \mathcal{N}_s} a_k b_k < b_j$$

This contradicts $\beta_{s'}(y_j) > b_j$.

Therefore, assumption was wrong and algorithm terminates.

With strict bounds the formula looks like this:

If the formula is satisfiable, then there is an $\varepsilon>0$ with:

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \leq b_{1}$$

$$\vdots$$

$$\wedge a_{i1}x_{1} + a_{i2}x_{2} + \dots + a_{in}x_{n} \leq b_{i}$$

$$\wedge a_{(i+1)1}x_{1} + a_{(i+1)2}x_{2} + \dots + a_{(i+1)n}x_{n} \leq b_{i+1} - \varepsilon$$

$$\vdots$$

$$\wedge a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \leq b_{m} - \varepsilon$$

We compute with ε symbolically. Our bounds are elements of

$$\mathbb{Q}_{\varepsilon} := \{a_1 + a_2\varepsilon \mid a_1, a_2 \in \mathbb{Q}\}\$$

The arithmetical operators and the ordering are defined as:

$$(a_1 + a_2\varepsilon) + (b_1 + b_2\varepsilon) = (a_1 + b_1) + (a_2 + b_2)\varepsilon$$

 $a \cdot (b_1 + b_2\varepsilon) = ab_1 + ab_2\varepsilon$
 $a_1 + a_2\varepsilon \le b_1 + b_2\varepsilon$ iff $a_1 < b_1 \lor (a_1 = b_1 \land a_2 \le b_2)$

Note: \mathbb{Q}_{ε} is a two-dimensional vector space over \mathbb{Q} . Changes to the configuration:

- β gives values for variables in \mathbb{Q}_{ε} .
- The tableaux does not contain ε . It is still a $\mathbb{Q}^{m \times n}$ matrix.

Example

$$F_1: 3x_1 + 2x_2 < 5 \land 2x_1 + 3x_2 < 1 \land x_1 + x_2 > 1$$

Step 1:

	x_1	<i>X</i> ₂	β	b _i	
β	0	0			
<i>y</i> ₁	3	2	0	$5-\varepsilon$	
<i>y</i> ₂	2	3	0	$1-\varepsilon$	
<i>y</i> 3	-1	-1	0	-1-arepsilon	(!)

Step 2:

	<i>y</i> ₃	<i>x</i> ₂	β	bi	
β	$-1-\varepsilon$	0			
<i>y</i> ₁	-3	-1	$3 + 3\varepsilon$ $2 + 2\varepsilon$	$5-\varepsilon$	
<i>y</i> ₂	-2	1	$2+2\varepsilon$	$1-\varepsilon$	(!)
x_1	-1	-1	$1+1\varepsilon$		

Step 3:

Solution ($\varepsilon = 0.1$): $x_1 = 2.4$, $x_2 = -1.3$.

Example

$$F_2: 3x_1 + 2x_2 < 5 \land 2x_1 - x_2 > 1 \land x_1 + 3x_2 > 4$$

 $\mathsf{Step}\ 1:$

	<i>x</i> ₁	<i>X</i> ₂	β	b _i	
β	0	0			
<i>y</i> ₁	3	2	0	$5-\varepsilon$	
<i>y</i> ₂	-2	2 1 -3	0	$-1-\varepsilon$	(!)
<i>y</i> 3	-1	-3	0	$-4-\varepsilon$	(!)

Step 2:

	<i>x</i> ₁	<i>y</i> 2	β	b _i
β	0	$-1-\varepsilon$		
<i>y</i> ₁	7	2	$-2-2\varepsilon$	$5-\varepsilon$
<i>x</i> ₂	2	1	$-1-\varepsilon$	
<i>y</i> 3	-7	-3	$3+3\varepsilon$	$-4-\varepsilon$ (!)

Step 3:

	<i>y</i> ₃	<i>y</i> ₂	β	b _i	
β	$-4-\varepsilon$	$-1-\varepsilon$			
<i>y</i> ₁	-1	-1	$5+2\varepsilon$	$5-\varepsilon$	(!)
<i>x</i> ₂	-2/7	1/7	$1+1/7\varepsilon$		
x_1	-1/7	-3/7	$1+4/7\varepsilon$		

Now $5 + 2\varepsilon > 5 - \varepsilon$ but all coefficients in first row negative.

Unsatisfiable.

Theorem (Sound and Complete)

Quantifier-free conjunctive $\Sigma_{\mathbb{Q}}$ -formula F is $T_{\mathbb{Q}}$ -satisfiable iff the Dutertre-de-Moura algorithm returns satisfiable.