Decision Procedures

Jochen Hoenicke

Software Engineering
\(-\frac{\stackrel{y}{2}}{\substack{品
른}}\)
Albert-Ludwigs-University Freiburg

Winter Term 2015/16

Theory of Arrays

Arrays: Quantifier-free Fragment of T_{A}

$$
\Sigma_{\mathrm{A}}:\{\cdot[\cdot], \cdot\langle\cdot \triangleleft \cdot\rangle,=\},
$$

where

- $a[i]$ is a binary function representing read of array a at index i;
- $a\langle i \triangleleft v\rangle$ is a ternary function representing write of value v to index i of array a;
- = is a binary predicate. It is not used on arrays.

Axioms of T_{A} :
(1) axioms of (reflexivity), (symmetry), and (transitivity) of T_{E}
(2) $\forall a, i, j, i=j \rightarrow a[i]=a[j]$
(3) $\forall a, v, i, j . i=j \rightarrow a\langle i \triangleleft v\rangle[j]=v$
(array congruence)
(9) $\forall a, v, i, j . i \neq j \rightarrow a\langle i \triangleleft v\rangle[j]=a[j]$ (read-over-write 1)
(read-over-write 2)

Decision Procedure for T_{A}

Given quantifier-free conjunctive Σ_{A}-formula F. To decide the T_{A}-satisfiability of F :

Step 1

For every read-over-write term $a\langle i \triangleleft v\rangle[j]$ in F, replace F with the formula

$$
\begin{aligned}
& (i=j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto v\}) \vee \\
& (i \neq j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto a[j]\})
\end{aligned}
$$

Repeat until there are no more read-over-write terms.

Decision Procedure for T_{A} (cont)

Step 2
Associate array variables a with fresh function symbol f_{a}. Replace read terms $a[i]$ with $f_{a}(i)$.

Step 3

Now F is a T_{E}-Formula. Decide T_{E}-satisfiability using the congruence-closure algorithm for each of the disjuncts produced in Step 1.

Example: Consider Σ_{A}-formula

$$
F: i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a\left\langle i_{1} \triangleleft v_{1}\right\rangle\left\langle i_{2} \triangleleft v_{2}\right\rangle[j] \neq a[j] .
$$

F contains a read-over-write term,

$$
a\left\langle i_{1} \triangleleft v_{1}\right\rangle\left\langle i_{2} \triangleleft v_{2}\right\rangle[j] \neq a[j] .
$$

Rewrite it to $F_{1} \vee F_{2}$ with:

$$
\begin{aligned}
& F_{1}: i_{2}=j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge v_{2} \neq a[j] \\
& F_{2}: i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a\left\langle i_{1} \triangleleft v_{1}\right\rangle[j] \neq a[j] .
\end{aligned}
$$

F_{1} does not contain any write terms, so rewrite it to

$$
F_{1}^{\prime}: i_{2}=j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge f_{a}(j)=v_{1} \wedge v_{2} \neq f_{a}(j) .
$$

The first two literals imply that $i_{1}=i_{2}$, contradicting the third literal, so F_{1}^{\prime} is T_{E}-unsatisfiable.

Now, we try the second case $\left(F_{2}\right)$:
F_{2} contains the read-over-write term $a\left\langle i_{1} \triangleleft v_{1}\right\rangle[j]$. Rewrite it to $F_{3} \vee F_{4}$ with

$$
\begin{aligned}
& F_{3}: i_{1}=j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge v_{1} \neq a[j] \\
& F_{4}: i_{1} \neq j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge a[j]=v_{1} \wedge a[j] \neq a[j] .
\end{aligned}
$$

Rewrite the array reads to

$$
\begin{aligned}
& F_{3}^{\prime}: i_{1}=j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge f_{a}(j)=v_{1} \wedge v_{1} \neq f_{a}(j) \\
& F_{4}^{\prime}: i_{1} \neq j \wedge i_{2} \neq j \wedge i_{1}=j \wedge i_{1} \neq i_{2} \wedge f_{a}(j)=v_{1} \wedge f_{a}(j) \neq f_{a}(j) .
\end{aligned}
$$

In F_{3}^{\prime} there is a contradiction because of the final two terms. In F_{4}^{\prime}, there are two contradictions: the first and third literals contradict each other, and the final literal is contradictory. Since F is equisatisfiable to $F_{1}^{\prime} \vee F_{3}^{\prime} \vee F_{4}^{\prime}, F$ is $T_{\text {A }}$-unsatisfiable.
Suppose instead that F does not contain the literal $i_{1} \neq i_{2}$. Is this new formula T_{A}-satisfiable?

Complexity of Decision Procedure for T_{A}

Our algorithm has a big disadvantage. Step 1 doubles the size of the formula:

$$
\begin{aligned}
& (i=j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto v\}) \vee \\
& (i \neq j \wedge F\{a\langle i \triangleleft v\rangle[j] \mapsto a[j]\})
\end{aligned}
$$

This can be avoided by introducing fresh variables $x_{a i j v}$:

$$
\begin{aligned}
& F\left\{a\langle i \triangleleft v\rangle[j] \mapsto x_{a i v}\right\} \wedge \\
& \left(\left(i=j \wedge x_{a i j v}=v\right) \vee\left(i \neq j \wedge x_{a i j v}=a[j]\right)\right)
\end{aligned}
$$

However, this is not in the conjunctive fragment of T_{E}.
There is no way around:
The conjunctive fragment of T_{A} is NP-complete.

Arrays and Quantifiers

In programming languages, one often needs to express the following concepts:

- Containment contains (a, ℓ, u, e) : the array a contains element e at some index between ℓ and u.

$$
\exists i . \ell \leq i \leq u \wedge a[i]=e
$$

- Sortedness sorted (a, ℓ, u) : the array a is sorted between index ℓ and index u.

$$
\forall i, j . \ell \leq i \leq j \leq u \Longrightarrow a[i] \leq a[j]
$$

- Partitioning partition $\left(a, \ell_{1}, u_{1}, \ell_{2}, u_{2}\right)$: The array elements between ℓ_{1} and u_{1} are smaller than all elements between ℓ_{2} and u_{2}.

$$
\forall i, j . \ell_{1} \leq i \leq u_{1} \wedge \ell_{2} \leq j \leq u_{2} \Longrightarrow a[i] \leq a[j]
$$

Decision Procedure for Arrays

These concepts can only be expressed as first-order formulae with quantifiers.

However: the general theory of arrays T_{A} with quantifier is not decidable.
Is there a decidable fragment of T_{A} that contains the above formulae?

Example

We want to prove validity for a formula, such as:

$$
\begin{aligned}
& \neg \text { contains }(a, \ell, u, e) \wedge e \neq f \rightarrow \neg \operatorname{contains}(a\langle j \triangleleft f\rangle, \ell, u, e) \\
& \neg(\exists i . \ell \leq i \leq u \wedge a[i]=e) \wedge e \neq f \\
& \quad \rightarrow \neg(\exists i . \ell \leq i \leq u \wedge a\langle j \triangleleft f\rangle[i] \neq e) .
\end{aligned}
$$

Check satisfiability of negated formula:
$\neg(\exists i . \ell \leq i \leq u \wedge a[i]=e) \wedge e \neq f \wedge(\exists i . \ell \leq i \leq u \wedge a\langle j \triangleleft f\rangle[i] \neq e)$.
Negation Normal Form:
$(\forall i . \ell>i \vee i>u \vee a[i] \neq e) \wedge e \neq f \wedge(\exists i . \ell \leq i \wedge i \leq u \wedge a\langle j \triangleleft f\rangle[i]=e)$.
or the equisatisfiable formula
$\forall i . \ell>i \vee i>u \vee a[i] \neq e \wedge e \neq f \wedge \ell \leq i_{2} \wedge i_{2} \leq u \wedge a\langle j \triangleleft f\rangle\left[i_{2}\right]=e$.
We need to handle satisfiability for universal quantifiers.

Array Property Fragment of T_{A}

Decidable fragment of T_{A} that includes \forall quantifiers
Array property
Σ_{A}-formula of form

$$
\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}],
$$

where \bar{i} is a list of variables.

- index guard $F[\bar{i}]$:

$$
\begin{aligned}
\text { iguard } & \rightarrow \text { iguard } \wedge \text { iguard } \mid \text { iguard } \vee \text { iguard } \mid \text { atom } \\
\text { atom } & \rightarrow \text { var }=\text { var } \mid \text { evar } \neq \text { var } \mid \text { var } \neq \text { evar } \mid \top \\
\text { var } & \rightarrow \text { evar } \mid \text { uvar }
\end{aligned}
$$

where uvar is any universally quantified index variable, and evar is any constant or unquantified variable.

- value constraint $G[\bar{i}]$: a universally quantified index can occur in a value constraint $G[\bar{i}]$ only in a read $a[i]$, where a is an array term.
The read cannot be nested; for example, $a[b[i]]$ is not allowed.
Array property Fragment: Boolean combinations of quantifier-free T_{A}-formulae and array properties

Example: Array Property Fragment

Is this formula in the array property fragment?

$$
F: \forall i . i \neq a[k] \rightarrow a[i]=a[k]
$$

The antecedent is not a legal index guard since $a[k]$ is not a variable (neither a uvar nor an evar); however, by simple manipulation

$$
F^{\prime}: v=a[k] \wedge \forall i . i \neq v \rightarrow a[i]=a[k]
$$

Here, $i \neq v$ is a legal index guard, and $a[i]=a[k]$ is a legal value constraint. F and F^{\prime} are equisatisfiable.
This trick works for every term that does not contain a uvar. However, no manipulation works for:

$$
G: \forall i . i \neq a[i] \rightarrow a[i]=a[k] .
$$

Thus, G is not in the array property fragment.

Example: Array Property Fragment (cont)

Is this formula in the array property fragment?

$$
F^{\prime}: \forall i j . i \neq j \rightarrow a[i] \neq a[j]
$$

No, the term uvar $\neq u v a r$ is not allowed in the index guard. There is no workaround.

Array property fragment and extensionality

Remark: Array property fragment allows expressing equality between arrays (extensionality): two arrays are equal precisely when their corresponding elements are equal.

For given formula

$$
F: \cdots \wedge a=b \wedge \cdots
$$

with array terms a and b, rewrite F as

$$
F^{\prime}: \cdots \wedge(\forall i . \top \rightarrow a[i]=b[i]) \wedge \cdots .
$$

F and F^{\prime} are equisatisfiable.
F^{\prime} is in array property fragment of T_{A}.

Decision Procedure for Array Property Fragment

Basic Idea: Similar to quantifier elimination.
Replace universal quantification

$$
\forall i . F[i]
$$

by finite conjunction

$$
F\left[t_{1}\right] \wedge \ldots \wedge F\left[t_{n}\right] .
$$

We call t_{1}, \ldots, t_{n} the index terms and they depend on the formula.

Example

Consider

$$
F: a\langle i \triangleleft v\rangle=a \wedge a[i] \neq v
$$

which expands to

$$
F^{\prime}: \forall j . a\langle i \triangleleft v\rangle[j]=a[j] \wedge a[i] \neq v
$$

Intuitively, only the index i is important:

$$
F^{\prime \prime}:\left(\bigwedge_{j \in\{i\}} a\langle i \triangleleft v\rangle[j]=a[j]\right) \wedge a[i] \neq v
$$

or simply

$$
a\langle i \triangleleft v\rangle[i]=a[i] \wedge a[i] \neq v .
$$

Simplifying,

$$
v=a[i] \wedge a[i] \neq v,
$$

it is clear that this formula, and thus F, is T_{A}-unsatisfiable.

Decision Procedure for Array Property Fragment

Given array property formula F, decide its T_{A}-satisfiability by the following steps:

Step 1

Put F in NNF, but do not rewrite inside a quantifier.

Step 2

Apply the following rule exhaustively to remove writes:
$\frac{F[a\langle i \triangleleft v\rangle]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=v \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)}$ for fresh $a^{\prime} \quad$ (write)
After an application of the rule, the resulting formula contains at least one fewer write terms than the given formula.

Step 3

Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists \bar{i} . G[\bar{i}]]}{F[G[\bar{j}]]} \text { for fresh } \bar{j} \quad \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Steps 4-6 accomplish the reduction of universal quantification to finite conjunction.
Main idea: select a set of symbolic index terms on which to instantiate all universal quantifiers. The set is sufficient for correctness.

Step 4

From the output F_{3} of Step 3, construct the index set \mathcal{I} :
$\{\lambda\}$
$\mathcal{I}=\cup\left\{t: \cdot[t] \in F_{3}\right.$ such that t is not a universally quantified variable $\}$
$\cup\{t: t$ occurs as an evar in the parsing of index guards $\}$
This index set is the finite set of indices that need to be examined. It includes

- all terms t that occur in some read $a[t]$ anywhere in F (unless it is a universally quantified variable)
- all terms t (constant or unquantified variable) that are compared to a universally quantified variable in some index guard.
- λ is a fresh constant that represents all other index positions that are not explicitly in \mathcal{I}.

Step 5 (Key step)
Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

where n is the number of quantified variables \bar{i}.

Step 6

From the output F_{5} of Step 5, construct

$$
F_{6}: F_{5} \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i
$$

The new conjuncts assert that the variable λ introduced in Step 4 is indeed unique.

Step 7

Decide the $T_{\text {A-satisfiability of }} F_{6}$ using the decision procedure for the quantifier-free fragment.

Example

Is this $T_{\mathrm{A}}^{=}$-formula valid?

$$
F:(\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \rightarrow a\langle k \triangleleft v\rangle=b
$$

Check satisfiability of:

$$
\neg((\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \rightarrow(\forall i . a\langle k \triangleleft v\rangle[i]=b[i]))
$$

Step 1: NNF

$$
F_{1}:(\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge(\exists i . a\langle k \triangleleft v\rangle[i] \neq b[i])
$$

Step 2: Remove array writes

$$
\begin{aligned}
F_{2}: & (\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge\left(\exists i . a^{\prime}[i] \neq b[i]\right) \\
& \wedge a^{\prime}[k]=v \wedge\left(\forall i . i \neq k \rightarrow a^{\prime}[i]=a[i]\right)
\end{aligned}
$$

Step 3: Remove existential quantifier

$$
\begin{aligned}
F_{3}: & (\forall i . i \neq k \rightarrow a[i]=b[i]) \wedge b[k]=v \wedge a^{\prime}[j] \neq b[j] \\
& \wedge a^{\prime}[k]=v \wedge\left(\forall i . i \neq k \rightarrow a^{\prime}[i]=a[i]\right)
\end{aligned}
$$

Example (cont)

Step 4: Compute index set $\mathcal{I}=\{\lambda, k, j\}$
Step 5+6: Replace universal quantifier:

$$
\begin{aligned}
F_{6}: & (\lambda \neq k \rightarrow a[\lambda]=b[\lambda]) \\
& \wedge(k \neq k \rightarrow a[k]=b[k]) \\
& \wedge(j \neq k \rightarrow a[j]=b[j]) \\
& \wedge b[k]=v \wedge a^{\prime}[j] \neq b[j] \wedge a^{\prime}[k]=v \\
& \wedge\left(\lambda \neq k \rightarrow a^{\prime}[\lambda]=a[\lambda]\right) \\
& \wedge\left(k \neq k \rightarrow a^{\prime}[k]=a[k]\right) \\
& \wedge\left(j \neq k \rightarrow a^{\prime}[j]=a[j]\right) \\
& \wedge \lambda \neq k \wedge \lambda \neq j
\end{aligned}
$$

Case distinction on $j=k$ proves unsatisfiability of F_{6}.
Therefore F is valid

The importance of λ

Is this formula satisfiable?

$$
F:(\forall i . i \neq j \rightarrow a[i]=b[i]) \wedge(\forall i . i \neq k \rightarrow a[i] \neq b[i])
$$

The algorithm produces:

$$
\begin{aligned}
F_{6}: & \lambda \neq j \rightarrow a[\lambda]=b[\lambda] \\
& \wedge j \neq j \rightarrow a[j]=b[j] \\
& \wedge k \neq j \rightarrow a[k]=b[k] \\
& \wedge \lambda \neq k \rightarrow a[\lambda] \neq b[\lambda] \\
& \wedge j \neq k \rightarrow a[j \neq b[j] \\
& \wedge k \neq k \rightarrow a[k] \neq b[k] \\
& \wedge \lambda \neq j \wedge \lambda \neq k
\end{aligned}
$$

The first, fourth and last line give a contradiction!

The importance of λ (cont)

Without λ we had the formula:

$$
\begin{aligned}
F_{6}^{\prime}: j & \neq j \rightarrow a[j]=b[j] \\
& \wedge k \neq j \rightarrow a[k]=b[k] \\
& \wedge j \neq k \rightarrow a[j] \neq b[j] \\
& \wedge k \neq k \rightarrow a[k] \neq b[k]
\end{aligned}
$$

which simplifies to:

$$
j \neq k \rightarrow a[k]=b[k] \wedge a[j] \neq b[j] .
$$

This formula is satisfiable!

Correctness of Decision Procedure

Theorem

Consider a Σ_{A}-formula F from the array property fragment of T_{A}. The output F_{6} of Step 6 of the algorithm is T_{A}-equisatisfiable to F.

This also works when extending the Logic with an arbitrary theory T with signature Σ for the elements:

Theorem

Consider a $\Sigma_{\mathrm{A}} \cup \Sigma$-formula F from the array property fragment of $T_{\mathrm{A}} \cup T$. The output F_{6} of Step 6 of the algorithm is $T_{A} \cup T$-equisatisfiable to F.

Proof of Theorem

Proof: It is easy to see that steps $1-3$ do not change the satisfiability of formula.
For step 4-6 we need to show:
(1) $H[\forall \bar{i} \cdot(F[\bar{i}] \rightarrow G[\bar{i}])]$ is satisfiable iff.
(2) $H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right] \wedge \bigwedge_{i \in \mathcal{I} \backslash\{\lambda\}} \lambda \neq i$ is satisfiable.

If the formula (1) is satisfied some Interpretation, then (2) holds in the same interpretation.

Proof of Theorem (cont)

If the formula (2) holds in some interpretation I, we construct an interpretation J as follows:

$$
\begin{aligned}
\operatorname{proj}_{\mathcal{I}}(j) & = \begin{cases}i & \text { if } i \in \mathcal{I} \wedge \alpha_{l}[j]=\alpha_{l}[i] \\
\lambda & \text { otherwise }\end{cases} \\
\alpha_{J}[a[j]] & =\alpha_{l}\left[a\left[\operatorname{proj}_{\mathcal{I}}(j)\right]\right] \\
\alpha_{J}[x] & =\alpha_{l}[x] \text { for every non-array variable and constant }
\end{aligned}
$$

J interprets the symbols occuring in formula (2) in the same way as I. Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

$$
J \vDash \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}]) \text { implies } J \models \forall \bar{i} .(F[\bar{i}] \rightarrow G[\bar{i}])
$$

Proof of Theorem (cont)

Assume $J \vDash \bigwedge_{i \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])$. Show:

$$
F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G[\bar{i}]
$$

The first implication $F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ can be shown by structural induction over F. Base cases:

- $\operatorname{var}_{1}=\operatorname{var}_{2} \rightarrow \operatorname{proj}_{\mathcal{I}}\left(\right.$ var $\left._{1}\right)=\operatorname{proj}_{\mathcal{I}}\left(\operatorname{var}_{2}\right):$ trivial.
- evar ${ }_{1} \neq$ var $_{2} \rightarrow \operatorname{proj}_{\mathcal{I}}\left(\right.$ evar $\left._{1}\right) \neq \operatorname{proj}_{\mathcal{I}}\left(\right.$ var $\left._{2}\right)$: By definition of \mathcal{I} : evar $r_{1} \in \mathcal{I} \backslash\{\lambda\}$. If evar ${ }_{1}=\operatorname{proj}_{\mathcal{I}}\left(e v a r_{1}\right)=\operatorname{proj}_{\mathcal{I}}\left(\operatorname{var}_{2}\right)$, then $\operatorname{var}_{2} \in \mathcal{I} \backslash\{\lambda\}$, hence evar ${ }_{1}=\operatorname{proj}_{\mathcal{I}}\left(\right.$ var $\left._{2}\right)=$ var $_{2}$
- var $_{1} \neq$ evar r_{2} analogously.

The induction step is trivial.
The second implication $F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ holds by assumption. The third implication $G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \Longrightarrow G[\bar{i}]$ holds because G contains variables i only in array reads $a[i]$. By definition of J : $\alpha_{J}[a[i]]=\alpha_{J}\left[a\left[\operatorname{proj}_{\mathcal{I}}(i)\right]\right]$.

Theory of Integer-Indexed Arrays

Theory of Integer-Indexed Arrays $T_{A}^{\mathbb{Z}}$

\leq enables reasoning about subarrays and properties such as subarray is sorted or partitioned.
signature of $T_{A}^{\mathbb{Z}}: \Sigma_{A}^{\mathbb{Z}}=\Sigma_{A} \cup \Sigma_{\mathbb{Z}}$
axioms of $T_{\mathrm{A}}^{\mathbb{Z}}$: both axioms of T_{A} and $T_{\mathbb{Z}}$

Array Property Fragment of $T_{A}^{\mathbb{Z}}$

Array property: $\Sigma_{A}^{\mathbb{Z}}$-formula of the form
$\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]$,
where \bar{i} is a list of integer variables.

- $F[\bar{i}]$ index guard:

$$
\begin{aligned}
\text { iguard } & \rightarrow \text { iguard } \wedge \text { iguard } \mid \text { iguard } \vee \text { iguard } \mid \text { atom } \\
\text { atom } & \rightarrow \text { expr } \leq \text { expr } \mid \text { expr }=\text { expr } \\
\text { expr } & \rightarrow \text { uvar } \mid \text { pexpr } \\
\text { pexpr } & \rightarrow \text { pexpr } \\
\text { pexpr }^{\prime} & \rightarrow \mathbb{Z} \mid \mathbb{Z} \cdot \text { evar } \mid \text { pexpr }^{\prime}+\text { pexpr }^{\prime}
\end{aligned}
$$

where uvar is any universally quantified integer variable, and evar is any existentially quantified or free integer variable.

- $G[\bar{i}]$ value constraint:

Any occurrence of a quantified index variable i must be as a read into an array, $a[i]$, for array term a. Array reads may not be nested; e.g., $a[b[i]]$ is not allowed.
Array property fragment of $T_{A}^{\mathbb{Z}}$ consists of formulae that are Boolean combinations of quantifier-free $\Sigma_{A}^{\mathbb{Z}}$-formulae and array properties.

Application: array property fragments

- Array equality $a=b$ in T_{A} :

$$
\forall i . a[i]=b[i]
$$

- Bounded array equality $\operatorname{beq}(a, b, \ell, u)$ in $T_{\mathrm{A}}^{\mathbb{Z}}$:

$$
\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]
$$

- Universal properties $F[x]$ in T_{A} :
- Bounded universal properties $F[x]$ in $T_{\mathrm{A}}^{\mathbb{Z}}$:

$$
\forall i . \ell \leq i \leq u \rightarrow F[a[i]]
$$

- Bounded and unbounded sorted arrays sorted (a, ℓ, u) in $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Z}}$ or $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Q}}:$

$$
\forall i, j . \ell \leq i \leq j \leq u \rightarrow a[i] \leq a[j]
$$

- Partitioned arrays partitioned $\left(a, \ell_{1}, u_{1}, \ell_{2}, u_{2}\right)$ in $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Z}}$ or $T_{\mathrm{A}}^{\mathbb{Z}} \cup T_{\mathbb{Q}}:$

The Decision Procedure (Step 1-2)

The idea again is to reduce universal quantification to finite conjunction. Given F from the array property fragment of $T_{\mathrm{A}}^{\mathbb{Z}}$, decide its $T_{\mathrm{A}}^{\mathbb{Z}}$-satisfiability as follows:

Step 1

Put F in NNF.

Step 2

Apply the following rule exhaustively to remove writes:

$$
\frac{F[a\langle i \triangleleft e\rangle]}{F\left[a^{\prime}\right] \wedge a^{\prime}[i]=e \wedge\left(\forall j . j \neq i \rightarrow a[j]=a^{\prime}[j]\right)} \text { for fresh } a^{\prime}
$$

To meet the syntactic requirements on an index guard, rewrite the third conjunct as

$$
\forall j . j \leq i-1 \vee i+1 \leq j \rightarrow a[j]=a^{\prime}[j] .
$$

The Decision Procedure (Step 3-4)

Step 3
Apply the following rule exhaustively to remove existential quantification:

$$
\frac{F[\exists \bar{i} . G[\bar{i}]]}{F[G[\bar{j}]]} \text { for fresh } \bar{j} \quad \text { (exists) }
$$

Existential quantification can arise during Step 1 if the given formula has a negated array property.

Step 4

From the output of Step 3, F_{3}, construct the index set \mathcal{I} :
$\mathcal{I}=\begin{aligned} & \left\{t: \cdot[t] \in F_{3} \text { such that } t \text { is not a universally quantified variable }\right\} \\ & \cup\{t: t \text { occurs as a pexpr in the parsing of index guards }\}\end{aligned}$
If $\mathcal{I}=\emptyset$, then let $\mathcal{I}=\{0\}$. The index set contains all relevant symbolic indices that occur in F_{3}.

The Decision Procedure (Step 5-6)

Step 5

Apply the following rule exhaustively to remove universal quantification:

$$
\frac{H[\forall \bar{i} . F[\bar{i}] \rightarrow G[\bar{i}]]}{H\left[\bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]} \quad \text { (forall) }
$$

n is the size of the block of universal quantifiers over \bar{i}.
Step 6
F_{5} is quantifier-free in the combination theory $T_{\mathrm{A}} \cup T_{\mathbb{Z}}$. Decide the ($T_{\mathrm{A}} \cup T_{\mathbb{Z}}$)-satisfiability of the resulting formula.

Example

$\Sigma_{A}^{\mathbb{Z}}$-formula:
$F: \quad(\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i])$

$$
\wedge \neg(\forall i . \ell \leq i \leq u+1 \rightarrow a\langle u+1 \triangleleft b[u+1]\rangle[i]=b[i])
$$

In NNF, we have

$$
\begin{aligned}
F_{1}: & (\forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
& \wedge(\exists i . \ell \leq i \leq u+1 \wedge a\langle u+1 \triangleleft b[u+1]\rangle[i] \neq b[i])
\end{aligned}
$$

Step 2 produces

$$
\begin{aligned}
& \forall i \cdot \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{2}: & \wedge\left(\exists i \cdot \ell \leq i \leq u+1 \wedge a^{\prime}[i] \neq b[i]\right) \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j \cdot j \leq u+1-1 \vee u+1+1 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Step 3 removes the existential quantifier by introducing a fresh constant k :

$$
\begin{aligned}
& \forall i . \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{3}: & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j . j \leq u+1-1 \vee u+1+1 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Simplifying,

$$
\begin{aligned}
& (\forall i \cdot \ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{3}^{\prime}: \quad & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge\left(\forall j . j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

The index set is

$$
\mathcal{I}=\{k, u+1\} \cup\{\ell, u, u+2\},
$$

which includes the read terms k and $u+1$ and the terms ℓ, u, and $u+2$ that occur as pexprs in the index guards.

Step 5 rewrites universal quantification to finite conjunction over this set:

$$
\begin{aligned}
& \bigwedge_{i \in \mathcal{I}}(\ell \leq i \leq u \rightarrow a[i]=b[i]) \\
F_{5}: \quad & \wedge \ell \leq k \leq u+1 \wedge a^{\prime}[k] \neq b[k] \\
& \wedge a^{\prime}[u+1]=b[u+1] \\
& \wedge \bigwedge_{j \in \mathcal{I}}\left(j \leq u \vee u+2 \leq j \rightarrow a[j]=a^{\prime}[j]\right)
\end{aligned}
$$

Expanding the conjunctions according to the index set \mathcal{I} and simplifying according to trivially true or false antecedents (e.g., $\ell \leq u+1 \leq u$ simplifies to \perp, while $u \leq u \vee u+2 \leq u$ simplifies to T) produces:

$$
\begin{align*}
& (\ell \leq k \leq u \rightarrow a[k]=b[k]) \tag{1}\\
& \wedge(\ell \leq u \rightarrow a[\ell]=b[\ell] \wedge a[u]=b[u]) \tag{2}\\
& \wedge \ell \leq k \leq u+1 \tag{3}\\
F_{5}^{\prime}: & \wedge a^{\prime}[k] \neq b[k] \tag{4}\\
& \wedge a^{\prime}[u+1]=b[u+1] \tag{5}\\
& \wedge\left(k \leq u \vee u+2 \leq k \rightarrow a[k]=a^{\prime}[k]\right) \tag{6}\\
& \wedge\left(\ell \leq u \vee u+2 \leq \ell \rightarrow a[\ell]=a^{\prime}[\ell]\right) \tag{7}\\
& \wedge a[u]=a^{\prime}[u] \wedge a[u+2]=a^{\prime}[u+2] \tag{8}
\end{align*}
$$

($T_{\mathrm{A}} \cup T_{\mathbb{Z}}$)-unsatisfiability of this quantifier-free $\left(\Sigma_{\mathrm{A}} \cup \Sigma_{\mathbb{Z}}\right)$-formula can be decided using the techniques of Combination of Theories. Informally, $\ell \leq k \leq u+1$ (3)

- If $k \in[\ell, u]$ then $a[k]=b[k]$ (1). Since $k \leq u$ then $a[k]=a^{\prime}[k]$ (6), contradicting $a^{\prime}[k] \neq b[k]$ (4).
- if $k=u+1, a^{\prime}[k] \neq b[k]=b[u+1]=a^{\prime}[u+1]=a^{\prime}[k]$ by (4) and (5), a contradiction.
Hence, F is $T_{A}^{\mathbb{Z}}$-unsatisfiable.

Correctness of Decision Procedure

Theorem

Consider a $\Sigma_{A}^{\mathbb{Z}} \cup \Sigma$-formula F from the array property fragment of $T_{\mathrm{A}}^{\mathbb{Z}} \cup T$. The output F_{5} of Step 5 of the algorithm is $T_{\mathrm{A}}^{\mathbb{Z}} \cup T$-equisatisfiable to F.

Proof of Theorem

Proof: The proof proceeds using the same strategy as for T_{A}. It is easy to see that steps $1-3$ do not change the satisfiability of formula. For step 4-5 we need to show:
(1) $H[\forall \bar{i} .(F[\bar{i}] \rightarrow G[\bar{i}])]$ is satisfiable iff.
(2) $H\left[\bigwedge_{i \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])\right]$ is satisfiable.
\Rightarrow : Obviously formula (1) implies formula (2).

Proof of Theorem (cont)

If the formula (2) holds in some interpretation $I=\left(D_{I}, \alpha_{l}\right)$, we construcu an interpretation $J=\left(D_{J}, \alpha_{J}\right)$ with $D_{J}:=D_{l}$ and

$$
\begin{aligned}
\operatorname{proj}_{\mathcal{I}}(j) & = \begin{cases}\max \left\{\alpha_{l}[i] \mid i \in \mathcal{I} \wedge \alpha_{l}[i] \leq \alpha_{l}[j]\right\} & \text { if for some } i \in \mathcal{I}: \\
\min \left\{\alpha_{l}[i] \mid i \in \mathcal{I} \wedge \alpha_{l}[i] \geq \alpha_{l}[j]\right\} & \alpha_{l}[i] \leq \alpha_{l}[j]\end{cases} \\
\left.\alpha_{J}[a[j]]\right] & =\alpha_{l}\left[\operatorname{ath}\left[\operatorname{proj} j_{\mathcal{I}}(j)\right]\right] \\
\alpha_{J}[x] & =\alpha_{l}[x] \text { for every non-array variable and constant }
\end{aligned}
$$

J interprets the symbols occuring in formula (2) in the same way as I. Therefore, (2) holds in J.
To prove that formula (1) holds in J, it suffices to show:

$$
J \vDash \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}]) \text { implies } J \vDash \forall \bar{i} .(F[\bar{i}] \rightarrow G[\bar{i}])
$$

Proof of Theorem (cont)

Assume $J \models \bigwedge_{\bar{i} \in \mathcal{I}^{n}}(F[\bar{i}] \rightarrow G[\bar{i}])$. Show:

$$
F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G[\bar{i}]
$$

The first implication $F[\bar{i}] \rightarrow F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ can be shown by structural induction over F. Base cases:

- expr $r_{1} \leq$ expr r_{2} : see exercise.
- expr $1_{1}=$ expr r_{2} follows from first case since it is equivalent to

$$
\text { expr } r_{1} \leq \text { expr } r_{2} \wedge \text { expr } r_{2} \leq \text { expr } r_{1} .
$$

The induction step is trivial.
The second implication $F\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \rightarrow G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right]$ holds by assumption. The third implication $G\left[\operatorname{proj}_{\mathcal{I}}(\bar{i})\right] \Longrightarrow G[\bar{i}]$ holds because G contains variables i only in array reads $a[i]$. By definition of J : $\alpha_{J}[a[i]]=\alpha_{J}\left[a\left[\operatorname{proj}_{\mathcal{I}}(i)\right]\right]$.

