Stubborn Sets for Reduced State Space Generation Seminar Talk

Dominik Winterer

Albert-Ludwigs-Universität Freiburg

February 8, 2016

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

1/23

Transition Systems and Model Checking

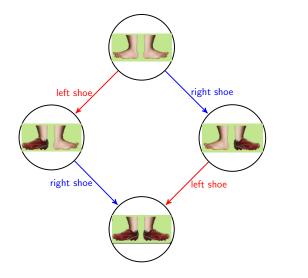
Abstraction

- Shrink transition system to tractable size
- "Solve" smaller transition system
- Use solution for regular transition system

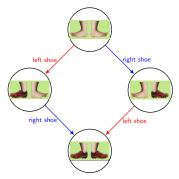
Partial Order Reduction

- Detect structural symmetries
- Fire only necessary transitions in each state

Partial Order Reduction - Example: Putting Shoes on



Partial Order Reduction ctd.



Observations:

- Commutative transitions
- Algorithms do not detect such symmetries without modifications

Example - Concurrent Program

Setting

- Three processes P1, P2, P3 share variables X, Y, Z, R
- Initially: All variables are zero, X = Y = Z = R = 0

P1
 P2
 P3

$$X := 1$$
 $Y := 2$
 $Z := 1$
 $R := X \cdot Y \cdot Z$
 $Z := 1$

Example - Concurrent Program

Setting

- Three processes P1, P2, P3 share variables X, Y, Z, R
- Initially: All variables are zero, X = Y = Z = R = 0

P1
 P2
 P3

$$X := 1$$
 $Y := 2$
 $Z := 1$
 $R := X \cdot Y \cdot Z$
 $Z := 1$

Observation: First statements of P1, P2, P3 independent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Variable/Transition Systems

Definition (variable/transition system)

A variable/transition system is a five-tuple ($V, T, type, next, ss_0$), where

- V is a finite set of variables
- ► *T* is a finite set of transitions
- type is a function assigning a type to each variable
- next is the next state function
- ss₀ is the initial state

Variable/Transition Systems ctd.

Concurrent Program as v/t system ($V, T, type, next, ss_0$) where

- $\blacktriangleright V = \{X, Y, Z, R\}$
- $\blacktriangleright T = \{t_1, \cdots, t_4\}$
- type(v) = INT for all $v \in V$
- ▶ state encoding XYZR, $next = \{(0000, t_1, 1000), \dots\}$

$$\bullet \ ss_0 = XYZR = 0000$$

P1 P2 P3

$$t_1 X := 1$$
 $t_2 Y := 2$ P3
 $t_3 Z := 1$
 $t_4 R := X \cdot Y \cdot Z$

Enabledness/Disabledness

- A transition t is enabled in state s if we can "fire" it
- If transition t is enabled in state s we denote this by $e_n(s, t)$,
- If transition t is not enabled in state s it is disabled, i.e. next(s, t) = undefined
- a state is terminal if there is no enabled transition

Enabledness/Disabledness- Example

Enabled Transitions in $ss_0 = 0000$: t_1, t_2, t_3 Disabled Transitions in $ss_0 = 0000$: t_4 Terminal state: s = 1212

P1 P2 P3 $t_1 X := 1$ $t_2 Y := 2$ $t_3 Z := 1$ $t_4 R := X \cdot Y \cdot Z$

Enabled with respect to a Variable Set

Definition (enabled with respect to variable set)

Transition t is enabled with respect to a set of variables $U \subseteq V$ in state s iff there exist a state s' s.t for all $v \in U : s'(v) = s(v)$

Notation: en(s, t, U)

Enabled with Respect to Variable Set - Example

State XYZR = 1000: t_4 is enabled with respect to $U = \{X\}$

P1 P2 P3 $t_1 X := 1$ $t_2 Y := 2$ $t_3 Z := 1$ $t_4 R := X \cdot Y \cdot Z$

Write Up Set

Definition (write up set)

A write up A set w.r.t t and U, wrup(U, t) is a set of transitions that make t enabled w.r.t U in some state s.

Write up Set - Example

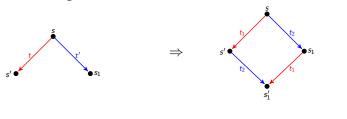
Example $A = \{t_1\}$ is a write up set w.r.t t_4 and $\{X\}$

P1 P2 P3 $t_1 X := 1$ $t_2 Y := 2$ $t_3 Z := 1$ $t_4 R := X \cdot Y \cdot Z$

Commutativity - The Diamond Property

Definition (commutativity)

Transition t and t' are commutative iff for every s, s' and s_1 there is a state s'_1 such that



Semistubborn Set

Definition (semistubborn set)

A set of transition $T_s \subseteq T$ is *semistubborn* in state *s*, if and only if for every $t \in T_s$

1.
$$\neg en(s,t) \implies \exists U \subseteq V : \neg en(s,t,U) \land wrup(t,U) \subseteq T_s$$

2. $en(s,t) \implies \forall t' \notin T_s : t \text{ and } t' \text{ are commutative}$

Semistubborn Set - Example

A Semistubborn Set in state $ss_0 = 0000$: $T_{ss_0} = \{t_1, t_4\}$ t_1 is enabled and commutative to t_2, t_3 t_4 has write up set $\{t_1\}$ w.r.t to $\{X\}$

P1 P2 P3

$$t_1 X := 1$$
 $t_2 Y := 2$ P3
 $t_3 Z := 1$
 $t_4 R := X \cdot Y \cdot Z$

16/23

Semistubborn Set - Counterexample I

A Semistubborn Set in state $ss_0 = 0000$: $T_{ss_0} = \emptyset$ Empty $T_{ss_0} \rightarrow$ no conditions to be satisfied

P1 P2 P3 $t_1 X := 1$ $t_2 Y := 2$ $t_3 Z := 1$ $t_4 R := X \cdot Y \cdot Z$

Semistubborn Set - Counterexample II

A Semistubborn Set in state $ss_0 = 0000$: $T_{ss_0} = \{t_5\}$

P1P2P3 $t_1 X := 1$ $t_2 Y := 2$ $t_3 Z := 1$ $t_4 R := X \cdot Y \cdot Z$ $t_2 Y := 2$ $t_5 V := 1000$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

18/23

Stubborn Sets

Definition (stubborn sets)

A set of transitions $T_s \subseteq T$ is stubborn in state s, iff

- 1. T_s is semistubborn in s
- 2. T_s contains an enabled transition in s (key transition)

Stubborn Set - Example

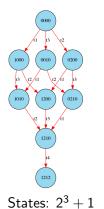
A Stubborn Set in state $ss_0 = 0000$: $T_{ss_0} = \{t_1, t_4\}$

 P1
 P2
 P3

 $t_1 \ X := 1$ $t_2 \ Y := 2$ $t_3 \ Z := 1$
 $t_4 \ R := X \cdot Y \cdot Z$ P3

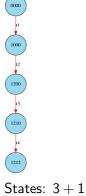
State Space Reduction with Stubborn Sets

No reduction



Transitions: 3! + 1

Stubborn Sets



Transitions: (3+1)+1

Computation of Stubborn Sets

Stubborn Set	Complexity
non-trivial	NP-hard
minimal enabled	NP-hard
optimal	PSPACE-hard

Properties

- Any superset of a stubborn set is a stubborn set
- Therefore T is stubborn
- Tradeoff reduction/overhead of stubborn set computation

Conclusion

- Stubborn set method: State space reduction technique
- Valmari provided theoretical foundation
- State space reduction can increase the performance/decrease memory usage of verification

- Similar concepts: Ample Sets, Persistent Sets
- Various applications of partial order reduction