
Abstraction-driven Concolic Testing‹

Przemys law Daca1, Ashutosh Gupta2, and Thomas A. Henzinger1

1 IST Austria, Austria
2 Tata Institute for Fundamental Research, India

Abstract. Concolic testing is a promising method for generating test
suites for large programs. However, it suffers from the path-explosion
problem and often fails to find tests that cover difficult-to-reach parts of
programs. In contrast, model checkers based on counterexample-guided
abstraction refinement explore programs exhaustively, while failing to
scale on large programs with precision. In this paper, we present a novel
method that iteratively combines concolic testing and model checking to
find a test suite for a given coverage criterion. If concolic testing fails
to cover some test goals, then the model checker refines its program ab-
straction to prove more paths infeasible, which reduces the search space
for concolic testing. We have implemented our method on top of the
concolic-testing tool Crest and the model checker CpaChecker. We
evaluated our tool on a collection of programs and a category of Sv-
Comp benchmarks. In our experiments, we observed an improvement in
branch coverage compared to Crest from 48% to 63% in the best case,
and from 66% to 71% on average.

1 Introduction

Testing has been a corner stone of ensuring software reliability in the industry,
and despite the increasing scalability of software verification tools, it still remains
the preferred method for debugging large software. A test suite that achieves
high code coverage is often required for certification of safety-critical systems,
for instance by the DO-178C standard in avionics [2].

Many methods for automated test generation have been proposed
[9,32,13,36,37,28,10,18]. In the recent years, concolic testing has gained popu-
larity as an easy-to-apply method that scales to large programs. Concolic test-
ing [33,35] explores program paths by a combination of concrete and symbolic
execution. This method, however, suffers from the path-explosion problem and
fails to produce test cases that cover parts of programs that are difficult to reach.

Concolic testing explores program paths using heuristic methods that select
the next path depending on the paths explored so far. Several heuristics for
path exploration have been proposed that try to maximize coverage of concolic

‹ This research was supported in part by the European Research Council (ERC) under
grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award).

testing [11,20,19], e.g., randomly picking program branches to explore, driv-
ing exploration toward uncovered branches that are closest to the last explored
branch, etc. These heuristics, however, are limited by their “local view” of the
program semantics, i.e., they are only aware of the (in)feasibility of the paths
seen so far. In contrast to testing, abstraction-based model checkers compute
abstract reachability graph of a program [3,26]. The abstract reachability graph
represents a “global view” of the program, i.e., the graph contains all feasible
paths. Due to abstraction, not all paths contained in the abstract reachability
graph are guaranteed to be feasible, therefore abstract model checking is not
directly useful for generating test suites.

In this paper, we present a novel method to guide concolic testing by an
abstract reachability graph generated by a model checker. The inputs to our
method are a program and set of test goals, e.g. program branches or loca-
tions to be covered by testing. Our method iterativly runs concolic testing
and a counterexample-guided abstraction refinement (CEGAR) based model
checker [14]. The concolic tester aims to produce test cases covering as many
goals as possible within the given time budget. In case the tester has not cov-
ered all the goals, the model checker is called with the original program and the
remaining uncovered goals marked as error locations. When the model checker
reaches a goal, it either finds a test that covers the goal or it refines the abstrac-
tion. We have modified the CEGAR loop in the model checker such that it does
not terminate as soon as it finds a test, but instead it removes the goal from the
set of error locations and continues building the abstraction. As a consequence,
the model checker refines the abstraction with respect to the remaining goals.
After the model checker has exhausted its time budget, it returns tests that cover
some of the goals, and an abstraction. The abstraction may prove that some of
the remaining goals are unreachable, thus they can be omitted by the testing
process.

We further use the abstraction computed by the model checker to construct
a monitor, which encodes the proofs of infeasibility of some paths in the control-
flow graph. To this end, we construct a program that is an intersection of the
monitor and the program. In the following iterations we run concolic testing
on the intersected program. The monitor drives concolic testing away from the
infeasible paths and towards paths that still may reach the remaining goals.
Due to this new “global-view” information concolic testing has fewer paths to
explore and is more likely to find test cases for the remaining uncovered goals. If
we are still left with uncovered goals, the model checker is called again to refine
the abstraction, which further reduces the search space for concolic testing. Our
method iterates until the user-defined time limit is reached.

The proposed method is configured by the ratio of time spent on model
checking to the time spent on testing. As we demonstrate in Section 2, this ratio
has a strong impact on the test coverage achieved by our method.

We implemented our method in a tool called Crabs, which is built
on top of a concolic-testing tool Crest [11] and a CEGAR-based model
checker CpaChecker [8]. We applied our tool on three hand-crafted exam-

2

ples, three selected published examples, and on 13 examples from an Sv-
Comp category. We compared our implementation with two tools: a concolic
tool Crest [11], and a test-case generator Fshell based on bounded model
checking [27]. The test objective was to cover program branches, and we calcu-
late test coverage as the ratio of branches covered by the generated test suite to
the number of branches that have not been proved unreachable. For a time limit
of one hour, our tool achieved coverage of 63% compared to 48% by other tools
in the best case, and average coverage of 71% compared to 66% on the category
examples. In absolute numbers, our experiments may not appear very exciting.
However, experience suggests that in automated test generation increasing test
coverage by every 1% becomes harder. The experiments demonstrate that our
method can cover branches that are difficult to reach by other tools and, unlike
most testing tools, can prove that some testing goals are unreachable.

To summarize, the main contributions of the paper are:

– We present a novel configurable algorithm that iterativly combines concolic
testing and model checking, such that concolic testing is guided by a program
abstraction and the abstraction is refined for the remaining test goals.

– We also present a modified CEGAR procedure that refines the abstraction
with respect to the uncovered goals.

– We provide an open-source tool [1] that implements the presented algorithm.
– An experimental evaluation of our algorithm and comparison with other

methods.

The paper is organized as follows. In Section 2 we motivate our approach on
examples. Section 3 presents background notation and concolic testing. In Sec-
tion 4 we present our modified CEGAR procedure, and in Section 5 we describe
our main algorithm. Finally, Section 6 describes the experimental evaluation.

2 Motivating Example

In this section, we illustrate effectiveness of our method on two examples: a
hand-crafted program, and a benchmark for worst-case execution time analysis
adapted from [4].

Simple loop In Figure 1 we present a simple program with a single while loop.
The program iterates 30 times through the while loop, and in every iteration
it reads an input. The test objective is to cover all locations of the program,
in particular to cover location 8, where the library function foo() is called. To
cover the call site to foo() the inputs in all iterations must equal 10, so only one
out of 230 ways to traverse the loop covers foo(). The standard concolic testing
easily covers all locations, except for foo() since it blindly explores exponentially
many possible ways to traverse the loop. As a consequence, a concolic-testing
tool is not able to generate a complete test suite that executes foo() within one
hour.

3

int i=0; bool b = false;

while (i<30){

int x = input();

if (x != 10)

b=true;

i++;

}

if (b == false)

foo();

(a)

1

2

3

4

5

6

7

8

9

i “ 0; b “ false

i ă 30i ě 30

x “ inputpq

x ‰ 10

x ““ 10

b “ true

i “ i` 1
 b

foopq

b

(b)

Fig. 1: (a) A simple while program. (b) The control-flow graph of the program.

Our algorithm uses a concolic tester and model checker based on predicate
abstraction, and runs them in alternation. First, we run concolic tester on the
example with a time budget of 1s. As we have observed earlier, the concolic
tester covers all locations of the program except for foo(). Then, we declare the
call site to foo() as an error location and call the model checker on the program
for 5s. This time budget is sufficient for the model checker to perform only a few
refinements of the abstraction, without finding a feasible path that covers foo().
In particular, it finds an abstract counterexample that goes through locations
1, 2, 3, 4, 5, 6, 2, 7, 8, 9. This counterexample is spurious, so the refinement proce-
dure finds the predicate “b holds.” The abstraction refined with this predicate
is showed in Figure 2(a).

In the second iteration of the algorithm, we convert the refined abstraction
into a monitor M shown in Figure 2(b). A monitor is a control-flow graph
that represents all the paths that are allowed by the abstraction. A monitor is
constructed by removing subsumed states from the abstraction. We say that an
abstract state sa is subsumed by a state s1a, if sa “ s1a, or s1a is more general
than sa. To this end, the monitor includes all the abstract states that are not
subsumed and the edges between them. The edges to the subsumed states are
redirected to the states that subsume them.

The monitor contains all the feasible paths of the program and is a refinement
of the control-flow graph of the original program. Therefore, we may perform
our subsequent concolic testing on the monitor interpreted as a program. In our
example, the structure of the monitor in Figure 2(b) encodes the information
that foo() can be reached only if b is never set to true. The refined control
flow graph makes it easy for concolic testing to cover the call to foo() — it can
simply backtrack whenever the search goes to the part of the refined program
where foo() is unreachable. Now, if we run Crest on the monitor M then it
finds the test case in less than 1s.

4

1 : true

2 : b

3 : b

4 : b

6 : b

7 : b

8 : b

9 : b

2 : b

5 : b

6 : b

2 : b

3 : b7 : b

9 : b 4 : b

6 : b5 : b

6 : b

i “ 0; b “ false

i ă 30i ě 30

x “ inputpq

x ‰ 10

x ““ 10

i “ i` 1

 b

foopq

i “ i` 1

i ă 30i ě 30

x “ inputpq

x ‰ 10 x ““ 10

b “ true

b

b “ true

(a)

1

2

3

4

6

7

8

9

10

11

12

1314

15 16

17

i “ 0; b “ false

i ă 30i ě 30

x “ inputpq

x ‰ 10

x ““ 10

i “ i` 1

assumep bq

foopq

i “ i` 1

i ă 30i ě 30

x “ inputpq

x ‰ 10

x ““ 10

b “ true

b “ true

assumepbq

(b)

Fig. 2: (a) Abstraction refined with the predicate b. Dashed arrows show sub-
sumption between abstract state. (b) The monitor obtained from the abstraction.

Nsichneu The “nsichneu” example is a benchmark for worst-case execution time
analysis [24] and it simulates a Petri net. This program consists of a large number
of if-then-else statements closed in a deterministic loop. The program maintains
several integer variables and fixed-sized arrays of integers. These data objects
are marked as volatile meaning that their value can change at any time. We
made their initial values the input to the program.

The structure of this benchmark makes it challenging for many testing tech-
niques. Testing based on bounded model checking (such as Fshell[27]) unwinds
the program up to a given bound and encodes the reachability problem as a
constraint-solving problem. However, this method may not find goals that are
deep in the program, as the number of constraints grows quickly with the bound.
Test generation based on model checking [7] also fails to deliver high coverage
on this example. The model checker needs many predicates to find a feasible
counterexample, and the abstraction quickly becomes expensive to maintain. In
contrast, pure concolic testing quickly covers easy-to-reach parts of the program.
However, later it struggles to cover goals that are reachable by fewer paths.

5

In our method, we run concolic testing and model checking alternatively,
each time with a time budget of 100s. Every iteration of model checking gives
us a more refined monitor to guide the testing process. Initially, our approach
covers goals at similar rate as pure concolic testing. When the easy goals have
been reached, our tool covers new goals faster than concolic testing, due to
the reachability information encoded in the monitor, which allows the testing
process to skip many long paths that would fail to cover new goals. After one
hour, our tool covers 63% of the test goals compared to 48% by concolic testing.

50%

60%

70%

0% 25% 50% 75% 100%
C

ov
er

a
g
e

testing
testing`model checking

Fig. 3: Test coverage vs. ratio of testing
to total time in our method.

Furthermore, our method is con-
figurable by the ratio of time spent
on model checking and concolic test-
ing. In Figure 3 we present the effect
of changing this ratio on the example.
If we run only concolic testing then we
obtain only 48% coverage. As we de-
crease the time spent on concolic test-
ing, the coverage increases up to 64%
and then starts decreasing. On the
other side of the spectrum, we gen-
erate tests by model checking (as in
[7]) and obtain only 13.9% coverage.
This observation allows one to config-
ure our method for most effective testing depending on the class of examples.

3 Preliminaries

In this paper, we consider only sequential programs and, for ease of presenta-
tion, we consider programs without procedures. Our method, however, is easily
applicable on programs with procedures and our implementation supports them.

Let V be a vector of variables names and V 1 be the vector of variables ob-
tained by placing prime after each variable in V . Let F pV q be the set of first-
order-logic formulas that only contain free variables from V .

Definition 1 (Program) A program P is a tuple pV,Loc, `I , Eq, where V is a
vector of variables, Loc is a finite set of locations, `I P Loc is the initial location,
and E Ď Locˆ F pV, V 1q ˆ Loc is a set of program transitions.

A control-flow graph (CFG) is a graph representation of a program. We define
the product of two programs Pi“1..2 “ pV,Loci, `

I
i , Eiq as the program P1ˆP2 “

pV,Loc1 ˆ Loc2, p`
I
1, `

I
2q, Eq, where

E “ tpp`1, `2q, e, p`
1
1, `

1
2qq | p`1, e, `

1
1q P E1 ^ p`2, e, `

1
2q P E2u.

A guarded command is a pair of a formula in F pV q and a list of updates
to variables in V . For ease of notation, we may write the formula in a pro-
gram transition as a guarded command over variables in V . For example, let

6

us consider V “ rx, ys. The formula represented by the guarded command
px ą y, rx :“ x ` 1sq is x ą y ^ x1 “ x ` 1 ^ y1 “ y. In our notation if a
variable is not updated in the command then the variable remains unchanged.
We use a special command variable :“ inputpq to model inputs to the program,
which logically means unconstrained update of the variable. For example, the
formula represented by the guarded command x :“ inputpq is y1 “ y. For an
expression or formula F we write F r{is to denote a formula that is obtained
after adding subscript i ` 1 to every primed variable and i to every unprimed
variable.

A valuation is a mapping from the program variables V to values in the data
domain. A state s “ pl, vq consists of a program location l and a valuation v. For
a state s “ pl, vq and a variable x, let spxq denote the valuation of x in v and let
locpsq “ l. A path is a sequence e0, . . . , en´1 of program transitions such that e0 “
p`I , , q, and for 0 ď i ă n, ei “ p`i, , `i`1q P E. An execution corresponding to
the path e0, . . . , en´1 is a sequence of states s0 “ p`0, v0q, . . . sn “ p`n, vnq, such
that 1) `0 “ `I , and 2) for all 0 ď i ă n, if ei “ p , cipV, V

1q, `1q then `i`1 “ `1

and cipvi, vi`1q holds true. We assume that for each execution of the program
there exist exactly one corresponding path, i.e., there is no non-determinism in
the program except inputs.

A path is represented symbolically by a set of path constraints, which we
define as follows. Let framepxq be the formula

Ź

yPV :y‰x y
1 “ y. Let rk be a

variable that symbolically represent the kth input on some path. We assume the
program does not contain any variable named r. Let e0, . . . , en´1 be a path. If
ei “ p , rF, x :“ exps, q then let Ci “ pF ^ x1 “ exp ^ framepxqqr{is and if
ei “ p , rF, x :“ inputpqs, q then let Ci “ pF ^framepxqqr{is^xi`1 “ rk, where
r0 up to rk´1 have been used in C0, . . . , Ci´1. The path constraints for the path
is C0, . . . , Cn´1.

A test of the program is a sequence of values. A test u1, . . . , uk realizes an
execution s0, . . . , sn and its corresponding path e0, . . . , en´1 if the following con-
ditions hold true:

– if n “ 0, then k “ 0.

– If n ą 0 and en´1 “ p , x :“ inputpq, q, snpxq “ uk and u1, . . . , uk´1 realizes
s0, . . . , sn´1.

– Otherwise, u1, . . . , uk realizes s0, . . . , sn´1.

A path is said to be feasible if there exists a test that realizes it. In the above,
we assume that the program does not read a variable until its value is initialized
within the program or explicitly taken as input earlier. Thus, the initial values
are not part of tests.

In the context of test suit generation, we may refer to a transition as a branch
if the source location of the transition has multiple outgoing transitions. A test
t covers branch e if the test realizes a path that contains e. Branch e is reachable
if there exists a test t that covers e. The test generation problem is to find a set
of tests that covers every reachable branch in the program.

7

Algorithm 1 ConcolicpP “ pV,L, `I , Eq, G, tbq

Require: program P “ pV,L, `I , Eq, uncovered branches G, time budget tb
Ensure: tests suite, uncovered branches
1: tstÐ pq;
2: `Ð `I ; arbitrary v; S Ð λx P V.K Ź initial values
3: pathC Ð pq; suiteÐH; k “ 0;
4: while ct ă tb and G ‰ H do Ź ct always has the current time
5: if De “ p`, rF, x :“ exps, `1q P E such that v |ù F then Ź expand
6: GÐ G´ teu; `Ð `1;
7: pathC.pushpF pSqq Ź F pSq is substitution
8: if exp “ inputpq then
9: if |tst| “ k then w Ð randV alpq; tst.pushpwq; else w Ð tstpkq;

10: v Ð vrx ÞÑ ws; S Ð Srx ÞÑ rks; k “ k ` 1
11: else
12: v Ð vrx ÞÑ exppvqs
13: S Ð SrxÑ UpdateSymMempS, exp, vqs
14: else Ź backtrack
15: suiteÐ suiteYttstu
16: if Di ă |pathC| such that φ “

Ź

jăi pathCpjq ^ pathCpiq is sat then
17: m “ getModelpφq
18: lÐ number of distinct ris that occur in φ
19: tstÐ pmpr0q, . . . ,mprl´1qq

20: goto 2
21: else break;

22: return psuite,Gq

3.1 Concolic Testing

In concolic testing, a test suite is generated using both symbolic and concrete
execution. In Algorithm 1 we reproduce the procedure; the presentation is mod-
ified such that we may use the procedure in our main algorithm. For simplicity
of the presentation, we assume that there are at most two outgoing transitions
at any program location and their guards are complementary to each other. This
assumption does not restrict the applicability of the method.

The procedure takes a program P “ pV,Loc, `I , Eq, a set of goal branches G,
and a time budget tb as input, and returns a test suite that covers a subset of G
within the time budget tb. The procedure maintains a symbolic memory S, which
is a partial function from the program variables V to symbolic expressions. We
use the symbol K to denote an undefined value in a partial function. In addition,
the procedure uses the following data structures: the current location `, current
valuation v of variables, list pathC that contains constraints along the current
path, test tst that produces the current path, counter k of inputs that have been
read on the current path, and a set suite of tests seen so far. We initialize all the
collecting data structures to be empty, ` is initialized to be the initial location
`I , and the symbolic memory to be empty.

8

The algorithm proceeds by extending the current path by a transition in
each iteration of the while loop at line 4. The loop runs until there are no goals
to be covered or the procedure runs out of its time budget. In the loop body,
the condition checks if it is possible to extend the current path by a transition
e “ p`, rF, x :“ exps, `1q. If the guard of e satisfies the current valuation v then
e is removed from the set of goals and the current location is updated to `1. In
case e has an input command x :“ inputpq, then 1) the algorithm updates vpxq
to the kth value from tst if it is available, 2) otherwise vpxq is assigned a random
value w, and w is appended to tst. In either case, S is updated by a fresh symbol
rk, assuming r0 to rk´1 have been used so far. If e is not an input command,
then both concrete and symbolic values of x are updated in v and S at line 10.

The symbolic memory is updated by the procedure UpdateSymMem.
UpdateSymMem first computes exppSq, and if the resulting formula is beyond
the capacity of available satisfiability checkers, then it simplifies the formula by
substituting the concrete values from v for some symbolic variables to make the
formula decidable in the chosen theory. UpdateSymMem is the key heuristics in
concolic testing that brings elements of concrete testing and symbolic execution
together. For details of this operation see [33,35].

At line 7, pathC is extended by F pSq, which is the formula obtained after
substituting every variable x occurring in F by Spxq. We assume that variables
are always initialized before usage, so S is always defined for free variables in F .

In case the current path cannot be further extended, at lines 16–19 the pro-
cedure tries to find a branch on the path to backtrack. For a chosen branch with
index i, a formula is built that contains the path constraints up to i ´ 1 and
the negation of the ith constraint. If this formula is satisfiable, then its model
is converted to a new test and path exploration restarts. Note that the branch
can be chosen non-deterministically, which allows us to choose a wide range of
heuristics for choosing the next path. For example, the branch can be chosen at
random or in the depth-first manner by picking the largest unexplored branch i.
Another important heuristic that is implemented in Crest is to follow a branch
that leads to the closest uncovered branch.

4 Coverage-driven Abstraction Refinement

In this section, we present a modified version of CEGAR-based model checking
that we use in our main algorithm. Our modifications are: 1) the procedure
continues until all goal branches are covered by tests, proved unreachable or
until the procedure reaches the time limit, 2) the procedure always returns an
abstract reachability graph that is closed under the abstract post operator.

The classical CEGAR-based model checking executes a program using an ab-
stract semantics, which is defined by an abstraction. Typically, the abstraction is
chosen such that the reachability graph generated due to the abstract execution
is finite. If the computed reachability graph satisfies the correctness specifica-
tion, then the input program is correct. Otherwise, the model checker finds an
abstract counterexample, i.e., a path in the reachability graph that reaches an

9

Algorithm 2 AbstractMC(P “ pV,L, `I , Eq, π, G, tb)

Require: program P “ pV,L, `I , Eq, predicates π, uncovered branches G,
time budget tb

Ensure: tests, remaining branches, branches proved unreachable, new predicates,
abstract reachability graph

1: worklist Ð tp`I ,Hqu; reachÐH; subsumeÐ λsa.K; parentpp`0,Hqq Ð K

2: while worklist ‰ H do
3: choose p`, Aq P worklist
4: worklist Ð worklistztp`, Aqu
5: if false P A or Dsa P parent

˚
pp`, Aqq. sa P sub then continue

6: reach Ð reach Y tp`, Aqu
7: if Dp`, A1q P reach´ sub. A Ď A1 then subsumeÐ subsumerp`, Aq ÞÑ p`, A1qs
8: else
9: if Dp`, A1q P reach ´ sub. A1 Ď A then subsume Ð subsumerp`, A1q ÞÑ
p`, Aqs

10: for each e “ p`, ρ, `1q P E do
11: A1 Ð spapA, ρq;worklist Ð worklist Y tp`1, A1qu
12: parentpp`1, A1qq “ p`, Aq; transpp`1, A1qq “ e
13: if e P G then
14: if Dm |ù pathConsppath to p`1, A1qq then
15: GÐ G´ teu
16: suiteÐ suiteYtthe sequence of values of rks in mu
17: else
18: if ct ă tb then Ź ct has current time
19: π Ð πY Refinepp`1, A1qq; goto 1

20: U “ G´ te | Dsa P reach. transpsaq “ eu Ź Unreachable goals
21: return (suite,G´ U ,U ,π,preach, parent, subsume, transq)

error state. The abstract counterexample is spurious if there is no concrete exe-
cution that corresponds to the abstract counterexample. If the counterexample
is not spurious then a bug has been found and the model checker terminates. In
case of a spurious counterexample, the refinement procedure refines the abstract
model. This is done by refining the abstraction to remove the spurious coun-
terexample, and the process restarts with the newly refined abstraction. After
a number of iterations, the abstract model may have no more counterexamples,
which proves the correctness of the input program.

In this paper, we use predicate abstraction for model checking. Let π be
a set of predicates, which are formulas over variables V . We assume that π
always contains the predicate “false.” We define abstraction and concretization
functions α and γ between the concrete domain of all formulas over V , and the
abstract domain of 2π:

αpρq “ tϕ P π | ρ ùñ ϕu γpAq “
ľ

A,

where A Ď π, and ρ is a formula over V . An abstract state sa of our program is
an element of Locˆ 2π. Given an abstract state p`, Aq and a program transition

10

p`, φ, `1q, the abstract strongest post is defined as:

spapA, φq “ αppDV. γpAq ^ φpV, V 1qqrV 1{V sq.

The abstraction is refined by adding predicates to π.
In Algorithm 2, we present the coverage-driven version of the CEGAR pro-

cedure. We do not declare error locations or transitions, instead the procedure
takes goal transitions G as input along with a program P “ pV,Loc, `I , Eq, pred-
icates π, and a time budget tb. Reachable states are collected in reach, while
worklist contains the frontier abstract states whose children are yet to be com-
puted. The procedure maintains functions parent and trans, such that if an
abstract state s1a is a child of a state sa by a transition e, then parentps1aq “ sa
and transps1aq “ e. To guarantee termination, one needs to ensure that abstract
states are not discovered repeatedly. Therefore, the procedure also maintains
the subsume function, such that subsumepp`, Aqq “ p`1, A1q only if ` “ `1 and
A Ď A1. We write sub “ ts | subsumepsq ‰ Ku for the set of subsumed states.
We denote the reflexive transitive closure of parent and subsume, by parent˚

and subsume˚, respectively.
The algorithm proceeds as follows. Initially, all collecting data structures

are empty, except worklist containing the initial abstract state p`I ,Hq. The
loop at line 2 expands the reachability graph in every iteration. At lines 3–4,
it chooses an abstract state pl, Aq from worklist. If any ancestor of the state is
already subsumed or the state is false, the state is discarded and the next state is
chosen. Otherwise, pl, Aq is added to reach. At lines 7–9, the subsume function
is updated. Afterwords, if pl, Aq became subsumed then we proceed to choose
another state from worklist. Otherwise, we create the children of pl, Aq in the
loop at line 10 by the abstract post spa. At line 12, parent and trans relations are
updated. At line 13, the procedure checks if the abstract reachability has reached
any of the goal transitions. If yes, then it checks the feasibility of the reaching
path. If the path is found to be feasible, we add the feasible solution as a test to
the suite at line 16. Otherwise, we refine and restart the reachability computation
to remove the spurious path from the abstract reachability at lines 18–19. In
case the algorithm has used its time budget, the refinement is not performed,
but the algorithm continues processing the states remaining in worklist. As
a consequence, the algorithm always returns a complete abstract reachability
graph.

We do not discuss details of the Refine procedure. The interested reader
may read a more detailed exposition of CEGAR in [25].

Abstract reachability graph (ARG) The relations parent, subsume, and
trans together define an abstract reachability graph (ARG), which is produced
by AbstractMC. A sequence of transitions e0, . . . , en´1 is a path in an ARG
if there is a sequence of abstract state s0, . . . , sn P reach, such that

1. s0 “ p`
I ,Hq,

2. for 1 ă i ď n we have parentpsiq P subsume
˚psi´1q and ei´1 “ transpsiq.

11

Theorem 1 Every feasible path of the program P is a path of an ARG. More-
over, every path in the ARG is a path of P .

AbstractMC returns a set suite of tests, set G of uncovered goals, proven
unreachable goals U , set π of predicates, and the abstract reachability graph.

Lazy abstraction Model checkers often implement various optimizations in
the computation of ARGs. One of the key optimization is lazy abstraction [26].
CEGAR may learn many predicates that lead to ARGs that are expensive to
compute. In lazy abstraction, one observes that not all applications of spa require
the same predicates. Let us suppose that the refinement procedure finds a new
predicate that must be added in specific place along a spurious counterexample
to remove this counterexample from future iterations. In other paths, however,
this predicate may be omitted. This can be achieved by localizing predicates to
parts of an ARG. Support for lazy abstraction can easily be added by additional
data structures that record the importance of a predicate in different parts of
programs.

5 Abstraction-driven Concolic Testing

In this section, we present our algorithm that combines concolic testing and
model checking. The key idea is to use the ARG generated by a model checker
to guide concolic testing to explore more likely feasible parts of programs.

We start by presenting the function MonitorFromARG that converts
an ARG into a monitor program. Let A “ preach, parent, subsume, transq
be an ARG. The monitor of A is defined as a program M “ pV, reach ´
sub, p`I ,Hq, E1YE2q, where

– E1 “ tpsa, e, s
1
aq | sa “ parentps1aq ^ e “ transps1aq ^ s

1
a R subu,

– E2 “ tpsa, e, s
2
aq | Ds1a. sa “ parentps1aq ^ e “ transps1aq ^

^s2a P subsume`ps1aq ^ s
2
a R subu.

The transitions in E1 are due to the child-parent relation, when the child abstract
state is not subsumed. In case the child state s1a is subsumed, then E2 contains a
transition from the parent of s1a to the non-subsumed state s2a in subsume`ps1aq,
where subsume` denotes the transitive closure of subsume. From the way we
built an ARG, it follows that the state s2a is uniquely defined and the monitor
is always deterministic.

In Algorithm 3 we present our method Crabs. Crabs takes as input a
program P , a set G of goal branches to be covered, and time constraints: the total
time limit tb, and time budgets tc, tm for a single iteration of concolic testing and
model checking, respectively. The algorithm returns a test suite for the covered
goals, and a set of goals that are provably unreachable. The algorithm records
in G the set of remaining goals. Similarly, U collects the goal branches that are
proved unreachable by the model checker. The algorithm maintains a set π of
predicates for abstraction, a program P for concolic testing, and a set G of goals

12

Algorithm 3 Crabs(P “ pV,Loc, `i, Eq, G, tb, tc, tm)

Require: program P “ pV,Loc, `i, Eq, branches G Ď E to cover, time budget for
concolic testing tc, time budget for model checking tm, total time budget tb,

Ensure: a test suite, set of provably unreachable branches
1: π Ð tfalseu; U ÐH; Ź U is a set of provably unreachable goals
2: suiteÐH Ź suite is a set of test
3: P Ð P ; GÐ G Ź program and goals for testing
4:
5: while G ‰ H and ct ă tb do Ź ct always has current time.
6: psuite1, q Ð ConcolicTestpP ,G, ct` tcq
7: GÐ G´ tg P E | Dtst P suite1.tst covers gu
8: suiteÐ suiteY suite1;
9: if G ‰ H then

10: psuite1, G, U 1, π,Aq Ð AbstractMCpP, π,G, ct` tmq
11: suiteÐ suiteY suite1; U Ð UYU 1

12: P Ð P ˆMonitorFromARGpAq Ź see sec. 5 for MonitorFromARG
13: G “ tpp`, q, e, p`1, qq P EP | p`, e, `

1
q P Gu

14: return psuite, Uq

for concolic testing. The program P is initialized to the original program P ,
and in the following iterations becomes refined by the monitors. The algorithm
collects in suite the tests generated by concolic testing and model checking.

The program P is a refinement of the original program P , so a single goal
branch in P can map to many branches in the program P . For this reason, we
perform testing for the set G of all possible extensions of G to the branches in
P . For simplicity, in our algorithm concolic testing tries to reach all goals in G,
even if they map to the same goal branch in G. In the implementation, however,
once concolic testing reaches a branch in G, it removes all branches from G that
have the same projection.

Crabs proceeds in iterations. At line 6, it first runs concolic testing on the
program P and the goal branches G with the time budget tc. The testing process
returns a tests suite1 and the set of remaining branches. Afterwords, if some
branches remain to be tested, a model checker is called on the program P with
predicates π, and a time budget tm at line 10. As we discussed in the previous
section, the model checker builds an abstract reachability graph (ARG), and
produces tests if it finds concrete paths to the goal branches. Since the model
checker runs for a limited amount of time, it returns an abstract reachability
graph that may have abstract paths to the goal branches, but no concrete paths
were discovered. Moreover, if the ARG does not reach some goal branch then
it is certain that the branch is unreachable. The model checker returns a new
set suite1 of tests, remaining goals G, and a set U 1 of newly proved unreachable
goals. Furthermore, it also returns a new set π of predicates for the next call
to the model checker, and an abstract reachability graph A. At line 12, we
construct a monitor from A by calling MonitorFromARG. We construct the
next program P by taking a product of the current P with the monitor. We also

13

update G to the set of all extensions of the branches in G to the branches in P .
In the next iteration concolic testing is called on P , which essentially explores
the paths of P that are allowed by the monitors generated from the ARG. The
algorithm continues until it runs out of time budget tb or no more goals remain.

The program P for testing is refined in every iteration by taking a product
with a new monitor. This ensures that P always becomes more precise, even if
the consecutive abstractions do not strictly refine each other, i.e. the ARG from
iteration i allows the set L of paths, while the ARG from iteration i` 1 allows
the set L1 such that L1 Ę L. This phenomenon occurs when the model checker
follows the lazy abstraction paradigm, described in Section 4. In lazy abstraction,
predicates are applied locally and some may be lost due to refinement. As a
consequence, program parts that were pruned from an ARG may appear again
in some following ARG. Another reason for this phenomenon may be a deliberate
decision to remove some predicates when the abstraction becomes too expensive
to maintain.

6 Experiments

We implemented our approach in a tool Crabs, built on top of the concolic
tester Crest [11] and the model checker CpaChecker [8]. In our experiments,
we observed an improvement in branch coverage compared to Crest from 48%
to 63% in the best case, and from 66% to 71% on average.

Benchmarks We evaluated our approach on a collection of programs: 1) a set
of hand-crafted examples (listed in Appendix), 2) example “nsichneu” [24] de-
scribed in Section 2 with varying number of loop iterations, 3) benchmarks
“parport” and “cdaudio1” from various categories of SvComp [6], 4) all 13
benchmarks from the “ddv-machzwd” SvComp category.

Optimizations Constructing an explicit product of an program and a monitor
would be cumbersome, due to complex semantics of the C language, e.g. the
type system and scoping rules. To avoid this problem, our tool explores the
product on-the-fly, by keeping track of the program and monitor state. We have
done minor preprocessing of the examples, such that they can be parsed by
both Crest and CpaChecker. Furthermore, CpaChecker does not deal
well with arrays, so in the “nsichneu” example we replaced arrays of fixed size
(at most 6) by a collection of variables.

Comparison of heuristics and tools We compare our tool with four other heuris-
tics for guiding concolic search that are implemented in Crest : the depth-first
search (DFS), random branch search (RndBr), uniform random search (Un-
fRnd), and CFG-guided search; for details see [11]. The depth-first search is a
classical way of traversing a tree of program paths. In the random branch search,
the branch to be flipped is chosen from all the branches on the current execution
with equal probability. Similarly, in the uniform random search the branch to be

14

flipped is also picked at random, but the probability decreases with the position
of the branch on the execution. In the CFG-guided heuristic the test process
is guided by a distance measure between program branches, which is computed
statically on the control-flow graph of the program. This heuristic tries to drive
exploration in into branches that are closer to the remaining test goals. The
concolic component of our tool uses the CFG-guided heuristic to explore the
product of a program and a monitor; this way branches closer in the monitor
are explored first. In Appendix we show experimental results for our tool with
the other concolic heuristics, and we demonstrate that our approach improves
coverage for each of them.

We compared our approach with the tool Fshell [27], which is based on the
bounded model checker CBMC. Fshell unwinds the control-flow graph until it
fully explores all loop iterations and checks satisfiability of paths that hit the
testing goals. This tool does not return a test suite, unless all loops are fully
explored.

Experimental setup All the tools were run with branch coverage as the test
objective. The coverage of a test suite is measured by the ratio c

r , where c is
the number of branches covered by a test suite, and r is the number of branches
that have not been proved unreachable. For Crest, we set r to be the number
of branches that are reachable in the control-flow graph by graph search, which
excludes code that is trivially dead. Our tool and Crest have the same number
of test goals, while Fshell counts more test goals on some examples. We run
our tool in a configuration, where testing takes approximately 80% of the time
budget. All experiments were performed on a machine with an AMD Opteron
6134 CPU and a memory limit of 12GB, and were averaged over three runs.

Results The experimental evaluation for a time budget of one hour is presented
in Table 1; for more detailed results see Appendix.

After one hour, our tool achieved the highest coverage on most examples. The
best case is “nsichneu(17),” where our tool achieved 63% coverage compared to
48% by the best other tool. We show in Appendix, that if we run our tool with
the DFS heuristic, we obtain even higher coverage of 69%. The hand-crafted
examples demonstrate that our method, as well as Fshell, can reach program
parts that are difficult to cover for concolic testing. In the benchmark category,
our tool obtained average coverage of 71% compared to 66% by Crest. In many
examples, we obtain higher coverage by both reaching more goals and proving
that certain goals are unreachable. Fshell generated test suites only for three
examples, since on other examples it was not able to fully unwind program loops.

15

Example Crabs-CFG (this paper) Crest-DFS[33,35] Crest-CFG[11] Crest-UnfRnd[11] Crest-RndBr[11] Fshell[27]
name branches coverage coverage coverage coverage coverage coverage

simple-while 12 12/12 (100%) 11/12 (91.2%) 11/12 (91.2%) 11/12 (91.2%) 11/12 (91.2%) 12/12 (100%)
branches 12 12/12 (100%) 9/12 (75%) 7/12 (58.3%) 12/12 (91.2%) 12/12 (91.2%) 12/12 (100%)
unreach 10 9/9 (100%) 9/10 (90%) 9/10 (90%) 9/10 (90%) 9/10 (90%) 9/9 (100%)

nsichneu(2) 5786 3843/5753 (66.8%) 5365/5786 (92.7%) 3098/5786 (53.5%) 2559/5786 (44.2%) 2196/5786 (38.0%) 4520/5786 (78.1%)
nsichneu(9) 5786 3720/5756 (64.6%) 4224/5786 (73.0%) 2843/5786 (49.1%) 2493/5786 (43.1%) 2187/5786 (37.8%) 1261/5786 (21.8%)
nsichneu(17) 5786 3619/5746 (63.0%) 2086/5786 (36.1%) 2758/5786 (47.7%) 2476/5786 (42.8%) 2161/5786 (37.3%) TO
parport 920 215/598 (35.9%) 215/920 (23.4%) 215/920 (23.4%) 215/920 (23.4%) 215/920 (23.4%) TO
cdaudio1 340 248/249 (99.6%) 250/340 (73.5%) 250/340 (73.5%) 246/340 (72.3%) 250/340 (73.5%) 266/266 (100%)

ddv outb 206 137/194 (70.8%) 78/206 (37.9%) 136/206 (66.2%) 111/206 (54.2%) 135/206 (65.7%) TO
ddv pthread 200 134/189 (71.3%) 73/200 (36.7%) 131/200 (65.5%) 109/200 (54.8%) 130/200 (65.2%) TO
ddv outwp 200 134/189 (70.8%) 73/200 (36.7%) 131/200 (65.5%) 107/200 (53.8%) 129/200 (64.7%) TO
ddv allfalse 214 143/199 (72.0%) 83/214 (38.9%) 141/214 (66.0%) 123/214 (57.6%) 140/214 (65.6%) TO
ddv inwp 200 134/189 (70.7%) 76/200 (38.2%) 131/200 (65.5%) 108/200 (54.2%) 129/200 (64.8%) TO
ddv inbp 200 133/189 (70.3%) 73/200 (36.5%) 130/200 (65.3%) 109/200 (54.5%) 130/200 (65.2%) TO
ddv outlp 200 133/189 (70.1%) 73/200 (36.5%) 130/200 (65.2%) 109/200 (54.7%) 130/200 (65.2%) TO
ddv outbp 200 134/188 (71.2%) 73/200 (36.5%) 130/200 (65.0%) 106/200 (53.3%) 130/200 (65.0%) TO
ddv inl 200 134/190 (70.7%) 89/200 (44.8%) 131/200 (65.8%) 109/200 (54.7%) 129/200 (64.8%) TO
ddv inlp 200 134/189 (71.1%) 75/200 (37.8%) 131/200 (65.5%) 108/200 (54.3%) 129/200 (64.8%) TO
ddv inw 206 139/194 (72.0%) 80/206 (39.2%) 136/206 (66.3%) 112/206 (54.5%) 135/206 (65.7%) TO
ddv inb 200 133/189 (70.5%) 73/200 (36.5%) 130/200 (65.3%) 114/200 (57.3%) 130/200 (65.2%) TO
ddv outl 200 133/189 (70.5%) 73/200 (36.5%) 131/200 (65.5%) 109/200 (54.8%) 131/200 (65.7%) TO

Table 1: Experimental results for one hour. RndBr stands for “random branch search” and UnfRnd for “uniform random
search.” TO means that no suite was generated before the time limit.

16

7 Related Work

Testing literature is rich, so we only highlight the most prominent approaches.
Random testing [32,13,9] can cheaply cover shallow parts of the program, but
it may quickly reach a plateau where coverage does not increase. Another test-
ing method is to construct symbolic objects that represent complex input to
a program [36,37]. In [10] objects for testing program are systematically con-
structed up to a given bound. The approach of [18] tests a concurrent program
by exploring schedules using partial-order reduction techniques.

Concolic testing suffers from the path-explosion problem, so various search
orders testing have been proposed, several of them are discussed in Section 6. In
[20] multiple input vectors are generated from a single symbolic path by negating
constraints on the path one-by-one, which allows the algorithm to exercise paths
at different depths of the program. Hybrid concolic testing [30] uses random
testing to quickly reach deep program statements and then concolic testing to
explore the close neighborhood of that point.

Our work is closest related to Synergy [22,5,21]. Synergy is an approach
for verification of safety properties that maintains a program abstraction and a
forest of tested paths. Abstract error traces are ordered such that they follow
some tested execution until the last intersection with the forest. If an ordered
abstract trace is feasible, then a longer concrete path is added to the forest;
otherwise, the abstraction is refined. Compared to Synergy our method has
several key differences. First, in Synergy model checking and test generation
work as a single process, while in our approach these components are independent
and communicate only by a monitor. Second, unlike us, Synergy does not pass
the complete abstract model of the program to concolic testing, where the testing
heuristics guides the search. Finally, in our approach we can configure the ratio
of model checking to testing, while in Synergy every unsuccessful execution
leads to refinement.

Another related work is [12], where concolic testing is guided towards pro-
gram parts that a static analyzer was not able to verify. In contrast to our
approach, the abstraction is not refined. In [17] conditional model checking is
used to generate a residual that represents the program part that has been left
unverified; the residual is then tested.

The work of [34] applies program analysis to identify control locations in a
concurrent program that are relevant for reaching the target state. These loca-
tions guide symbolic search toward the target and predicates in failed symbolic
executions are analyzed to find new relevant locations. The Check’n’Crash
[15] tool uses a constraint solver to reproduce and check errors found by static
analysis of a program. In [16] the precision of static analysis was improved by
adding a dynamic invariant detection .

The algorithm of [31] presents a testing method, where a program is simplified
by replacing function calls by unconstrained input. Spurious counterexample are
removed in a CEGAR loop by lazily inserting function bodies. In contrast, our
method performs testing on a concrete program and counterexamples are always
sound.

17

A number of papers consider testing program abstraction with bounded
model checking (BMC). If the abstraction is sufficiently small, then a program
invariant can be established by exhaustively testing the abstraction with BMC.
In [29] a Boolean circuit is abstracted, such that it decreases the bound that
needs to be explored in an exhaustive BMC search. In [23] BMC is run on an
abstract model up to some bound. If the invariant is not violated, then the model
is replaced by an unsat core and the bound is incremented. If a spurious coun-
terexample is found, then clauses that appear in the unsat core are added to the
abstraction.

8 Conclusion

We presented an algorithm that combines model checking and concolic testing
synergistically. Our method iterativly runs concolic testing and model checking,
such that concolic testing is guided by a program abstraction, and the abstrac-
tion is refined for the remaining test goals. Our experiments demonstrated that
the presented method can increase branch coverage compared to both concolic
testing, and test generation based on model checking.

We also observed that our method is highly sensitive to optimizations and
heuristics available in the model checker. For instance, lazy abstraction allows the
model checker to get pass bottlenecks created due to over-precision in some parts
of ARGs. However, lazy abstraction may lead to a monitor that is less precise
than the monitors of the past iterations, which may lead to stalled progress in
covering new goals by our algorithm. In the future work, we will study such
complimentary effects of various heuristics in model checkers to find the optimal
design of model checkers to assist a concolic-testing tool. We believe that adding
this feature will further improve the coverage of our tool.

Acknowledgments We thank Andrey Kupriyanov for feedback on the
manuscript, and Michael Tautschnig for help with preparing the experiments.

18

References

1. CRABS tool. http://pub.ist.ac.at/~przemek/crabs_tool.html.

2. Radio Technical Commission for Aeronautics. www.rtca.org.

3. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via
static analysis. In POPL, 2002.

4. A. Banerjee, S. Chattopadhyay, and A. Roychoudhury. Static analysis driven cache
performance testing. In RTSS, pages 319–329, 2013.

5. N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons. Proofs from
tests. In ISSTA, pages 3–14, 2008.

6. D. Beyer. Software verification and verifiable witnesses - (report on SV-COMP
2015). In TACAS, pages 401–416, 2015.

7. D. Beyer, A. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. Generating
tests from counterexamples. In A. Finkelstein, J. Estublier, and D. S. Rosenblum,
editors, ICSE, pages 326–335. IEEE Computer Society, 2004.

8. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In CAV, pages 184–190, 2011.

9. D. L. Bird and C. U. Munoz. Automatic generation of random self-checking test
cases. IBM Systems Journal, 22(3):229–245, 1983.

10. C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on
java predicates. In ISSTA, pages 123–133, 2002.

11. J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In ASE,
pages 443–446, 2008.

12. M. Christakis, P. Müller, and V. Wüstholz. Guiding dynamic symbolic execution
toward unverified program executions. Technical report, ETH Zurich, 2015.

13. I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: adaptive random testing
for object-oriented software. In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors,
ICSE, pages 71–80. ACM, 2008.

14. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV, 2000.

15. C. Csallner and Y. Smaragdakis. Check ’n’ crash: combining static checking and
testing. In ICSE, pages 422–431, 2005.

16. C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A hybrid analysis tool for
bug finding. ACM Trans. Softw. Eng. Methodol., 17(2), 2008.

17. M. Czech, M. C. Jakobs, and H. Wehrheim. Just test what you cannot verify! In
A. Egyed and I. Schaefer, editors, Fundamental Approaches to Software Engineer-
ing, volume 9033, pages 100–114. Springer, 2015.

18. P. Godefroid. Model checking for programming languages using verisoft. In POPL,
pages 174–186, 1997.

19. P. Godefroid. Compositional dynamic test generation. In POPL, pages 47–54,
2007.

20. P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing.
In NDSS. The Internet Society, 2008.

21. P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali. Compositional may-must
program analysis: unleashing the power of alternation. In POPL, pages 43–56,
2010.

22. B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
Synergy: a new algorithm for property checking. In SIGSOFT FSE, pages 117–
127, 2006.

19

http://pub.ist.ac.at/~przemek/crabs_tool.html
www.rtca.org

23. A. Gupta and O. Strichman. Abstraction refinement for bounded model checking.
In CAV, pages 112–124, 2005.

24. J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET
benchmarks – past, present and future. In B. Lisper, editor, WCET, pages 137–
147, Brussels, Belgium, July 2010. OCG.

25. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, 2004.

26. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, 2002.

27. A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. Fshell: Systematic test case
generation for dynamic analysis and measurement. In CAV, pages 209–213, 2008.

28. A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did you specify your
test suite. In C. Pecheur, J. Andrews, and E. D. Nitto, editors, ASE, pages 407–416.
ACM, 2010.

29. D. Kroening. Computing over-approximations with bounded model checking.
Electr. Notes Theor. Comput. Sci., 144(1):79–92, 2006.

30. R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE, ICSE ’07, pages
416–426, Washington, DC, USA, 2007. IEEE Computer Society.

31. R. Majumdar and K. Sen. Latest : Lazy dynamic test input generation. Technical
Report UCB/EECS-2007-36, EECS Department, University of California, Berke-
ley, 2007.

32. C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test
generation. In ICSE, pages 75–84. IEEE Computer Society, 2007.

33. N. K. Patrice Godefroid and K. Sen. Dart: directed automated random testing. In
PLDI, pages 213–223. ACM, 2005.

34. N. Rungta, E. G. Mercer, and W. Visser. Efficient testing of concurrent programs
with abstraction-guided symbolic execution. In Model Checking Software, 16th
International SPIN Workshop, Grenoble, France, June 26-28, 2009. Proceedings,
LNCS, pages 174–191, 2009.

35. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In
ESEC/SIGSOFT FSE, pages 263–272, 2005.

36. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In G. S. Avrunin and G. Rothermel, editors, ISSTA, pages 97–107.
ACM, 2004.

37. T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: A framework for generat-
ing object-oriented unit tests using symbolic execution. In TACAS, pages 365–381,
2005.

20

Appendix

Experiments for concolic search orders

Our approach is independent of the search order used in concolic testing. We
modified three search orders in Crest to work with a monitor: DFS, CFG
and RndBr. The experimental evaluation is shown in Tables 2 and 3. The results
suggest that using the information from a monitor increases test coverage for all
three heuristics.

21

Example Crabs-DFS (this paper) Crest-DFS[33,35] Crabs-CFG (this paper) Crest-CFG[11] Crabs-RndBr (this paper) Crest-RndBr[11]
name branches coverage coverage coverage coverage coverage coverage

nsichneu(2) 5786 5329/5765 (92.4%) 5264/5786 (91.0%) 3351/5763 (58.1%) 2807/5786 (48.5%) 2344/5756 (40.7%) 2143/5786 (37.0%)
nsichneu(9) 5786 3332/5771 (57.7%) 2086/5786 (36.1%) 2978/5761 (51.7%) 2656/5786 (45.9%) 2269/5764 (39.4%) 2128/5786 (36.8%)
nsichneu(17) 5786 2949/5776 (51.1%) 1453/5786 (25.1%) 2842/5764 (49.3%) 2546/5786 (44.0%) 2305/5758 (40.0%) 2117/5786 (36.6%)

ddv allfalse 214 87/208 (42.0%) 83/214 (38.9%) 142/205 (69.3%) 134/214 (62.9%) 139/203 (68.8%) 131/214 (61.5%)
ddv outlp 200 81/195 (41.4%) 73/200 (36.5%) 133/189 (70.1%) 123/200 (61.7%) 125/191 (65.7%) 121/200 (60.7%)
ddv inl 200 76/194 (39.4%) 89/200 (44.8%) 132/189 (69.9%) 126/200 (63.3%) 130/192 (67.5%) 119/200 (59.8%)
ddv pthread 200 76/195 (39.1%) 73/200 (36.7%) 132/189 (69.9%) 122/200 (61.0%) 130/190 (68.7%) 122/200 (61.0%)
ddv outl 200 84/194 (43.6%) 73/200 (36.5%) 132/190 (69.7%) 117/200 (58.7%) 130/189 (68.8%) 125/200 (62.5%)
ddv inlp 200 77/194 (39.9%) 73/200 (36.7%) 132/190 (69.7%) 122/200 (61.0%) 129/190 (67.9%) 121/200 (60.5%)
ddv outwp 200 84/194 (43.6%) 73/200 (36.7%) 133/190 (69.9%) 122/200 (61.2%) 129/188 (68.7%) 124/200 (62.0%)
ddv inbp 200 88/194 (45.4%) 73/200 (36.5%) 132/190 (69.7%) 120/200 (60.0%) 129/189 (68.4%) 120/200 (60.2%)
ddv outbp 200 76/194 (39.2%) 73/200 (36.5%) 117/189 (62.0%) 119/200 (59.8%) 131/190 (69.2%) 119/200 (59.5%)
ddv inw 206 83/200 (41.5%) 80/206 (39.2%) 137/195 (70.3%) 124/206 (60.5%) 136/196 (69.6%) 125/206 (60.7%)
ddv outb 206 87/199 (43.7%) 78/206 (37.9%) 136/195 (69.8%) 130/206 (63.4%) 131/196 (67.1%) 129/206 (62.8%)
ddv inwp 200 83/195 (42.5%) 76/200 (38.2%) 132/189 (70.1%) 122/200 (61.2%) 129/191 (67.5%) 118/200 (59.2%)
ddv inb 200 85/194 (44.2%) 73/200 (36.5%) 131/189 (69.7%) 121/200 (60.5%) 128/189 (67.7%) 121/200 (60.8%)

Table 2: Detailed experimental results for 15m. RndBr stands for “random branch search.”

Example Crabs-DFS (this paper) Crest-DFS[33,35] Crabs-CFG (this paper) Crest-CFG[11] Crabs-RndBr (this paper) Crest-RndBr[11]
name branches coverage coverage coverage coverage coverage coverage

nsichneu(2) 5786 5406/5758 (93.9%) 5365/5786 (92.7%) 3843/5753 (66.8%) 3098/5786 (53.5%) 2565/5738 (44.7%) 2196/5786 (38.0%)
nsichneu(9) 5786 4042/5755 (70.2%) 4224/5786 (73.0%) 3720/5756 (64.6%) 2843/5786 (49.1%) 2474/5742 (43.1%) 2187/5786 (37.8%)
nsichneu(17) 5786 3951/5761 (68.6%) 2086/5786 (36.1%) 3619/5746 (63.0%) 2758/5786 (47.7%) 2460/5746 (42.8%) 2161/5786 (37.3%)

ddv allfalse 214 87/207 (42.2%) 83/214 (38.9%) 143/199 (72.0%) 141/214 (66.0%) 142/199 (71.4%) 140/214 (65.6%)
ddv outlp 200 78/193 (40.7%) 73/200 (36.5%) 133/189 (70.1%) 130/200 (65.2%) 132/188 (70.0%) 130/200 (65.2%)
ddv inl 200 80/193 (41.7%) 89/200 (44.8%) 134/190 (70.7%) 131/200 (65.8%) 132/188 (70.0%) 129/200 (64.8%)
ddv pthread 200 78/191 (41.1%) 73/200 (36.7%) 134/189 (71.3%) 131/200 (65.5%) 132/190 (69.5%) 130/200 (65.2%)
ddv outl 200 102/192 (53.1%) 73/200 (36.5%) 133/189 (70.5%) 131/200 (65.5%) 131/189 (69.6%) 131/200 (65.7%)
ddv inlp 200 79/193 (40.9%) 75/200 (37.8%) 134/189 (71.1%) 131/200 (65.5%) 133/188 (70.6%) 129/200 (64.8%)
ddv outwp 200 82/191 (42.9%) 73/200 (36.7%) 134/189 (70.8%) 131/200 (65.5%) 131/188 (69.9%) 129/200 (64.7%)
ddv inbp 200 90/191 (47.5%) 73/200 (36.5%) 133/189 (70.3%) 130/200 (65.3%) 132/189 (69.8%) 130/200 (65.2%)
ddv outbp 200 77/192 (40.1%) 73/200 (36.5%) 134/188 (71.2%) 130/200 (65.0%) 132/188 (70.3%) 130/200 (65.0%)
ddv inw 206 91/198 (46.0%) 80/206 (39.2%) 139/194 (72.0%) 136/206 (66.3%) 137/194 (70.4%) 135/206 (65.7%)
ddv outb 206 94/195 (48.2%) 78/206 (37.9%) 137/194 (70.8%) 136/206 (66.2%) 137/193 (71.2%) 135/206 (65.7%)
ddv inwp 200 87/191 (45.5%) 76/200 (38.2%) 134/189 (70.7%) 131/200 (65.5%) 132/188 (70.0%) 129/200 (64.8%)
ddv inb 200 82/192 (42.8%) 73/200 (36.5%) 133/189 (70.5%) 130/200 (65.3%) 132/189 (69.8%) 130/200 (65.2%)

Table 3: Detailed experimental results for 1h.

22

Hand-craft program

We present hand-craft example that were used for experimental evaluation.

const int B=30;

int main(void) {

int i=0;

int x;

int b = 0;

while (i<B){

x = input();

// we distinguish two cases

// so that corner cases of DFS

//don’t give full coverage

if (i==6 && x== 4){b=1;}

if (i!=6 && x!= 4){b=1;}

i++;

}

if (b==0) {printf("Goal!\n");}

}

Fig. 4: The “simple-while” example.

23

const int N=30;

// function that takes long time to analyze

int foo(int y){

int i,c=0;

for (int j=0;j<N;j++){

i = input();

if (i == c)

c++;

}

return c;

}

void bar(int y){

if (y<20){

printf("Goal one\n");

} else {

printf("Goal two\n");

}

}

int main(void) {

int y,x;

y = input();

if (y>0){

x = foo(y);

} else {

x = foo(y+1);

}

if (x==5 && y>10){

// discover that can be reached only if y>0

bar(y);

}

}

Fig. 5: The “branches” example.

24

const int N=30;

// function that takes long time to analyze

int h(int y){

int i,c=0;

for (int j=0;j<N;j++){

i = input();

if (i == c)

c++;

}

return c;

}

// some library call

void call(int i){

if (i<0){

printf("Goal unreach\n");

} else {

printf("Goal two\n");

}

}

int main(void) {

int i,j,r=0;

i = 5;

while(i>0){

int tmp = h(i);

if (tmp > r){

r = tmp;

}

i--;

}

call(r);

}

Fig. 6: The “unreach” example.

25

	Abstraction-driven Concolic Testing

