
–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 1: Introduction

2015-10-20

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Motivation and Context

–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

2/36





Recall: Model

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

5/36

Definition. [Folk] A model is an abstract, formal, mathematical representation
or description of structure or behaviour of a (software) system.

Definition. (Glinz, 2008, 425)
A model is a concrete or mental image (Abbild) of something
or a concrete or mental archetype (Vorbild) for something.

Three properties are constituent:

(i) the image attribute (Abbildungsmerkmal), i.e. there is an entity (called
original) whose image or archetype the model is,

(ii) the reduction attribute (Verkürzungsmerkmal), i.e. only those attributes
of the original that are relevant in the modelling context are represented,

(iii) the pragmatic attribute, i.e. the model is built in a specific context for a
specific purpose.





One Software Modelling Language: UML (OMG, 2011b, 694)

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

8/36

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram Component
Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

Profile Diagram

OCL

Dobing and Parsons (2006)

(Our) Premises for Using a Software Modelling Language

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

9/36

: C

s3

D
x : Int

E/

(i) We want to know
how the words of the language look like: Syntax.

(In UML: when is a diagram a proper state machine?)



(Our) Premises for Using a Software Modelling Language

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

9/36

: C

s3

D
x : Int

E/✘
(i) We want to know

how the words of the language look like: Syntax.

(In UML: when is a diagram a proper state machine?)

(Our) Premises for Using a Software Modelling Language

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

9/36

: C

s3

D
x : Int

E/

•

•

s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

✘
(i) We want to know

how the words of the language look like: Syntax.

(In UML: when is a diagram a proper state machine?)

(ii) We want to know
what a word of the language means: Semantics.

(In UML: can sending event E and then G kill the object?)

→ then we can formally analyse the model, e.g.,
prove that the design satisfies the requirements,
simulate the model, automatically generate test cases,
generate code, etc.

• UML is sometimes (neutrally, or as offence) called “semi-formal”:

the UML standard OMG (2011a,b) is strong on (i), but weak(er) on (ii).

(“the diagram is self-explanatory”, “everybody understands the diagram” — No.)

• In the lecture: study the (!) syntax, define one (!) semantics.



Our? Floorplan Modes!

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

10/36

Sketch: Blueprint: Program:

+ wiringplan + windows

+ ...

K
h
o
sh
n
ev
is
(2
0
0
4
)

With UML it’s the same [http://martinfowler.com/bliki]:

“[...] people differ about what should be in the UML be-
cause there are differing fundamental views about what
the UML should be.

So when someone else’s view of the UML seems rather
different to yours, it may be because they use a different
UmlMode to you.”

Our? Floorplan Modes!

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

10/36

Sketch: Blueprint: Program:

+ wiringplan + windows

+ ...

K
h
o
sh
n
ev
is
(2
0
0
4
)

With UML it’s the same [http://martinfowler.com/bliki]:

“[...] people differ about what should be in the UML be-
cause there are differing fundamental views about what
the UML should be.

So when someone else’s view of the UML seems rather
different to yours, it may be because they use a different
UmlMode to you.”

Sketch

In this UmlMode developers use
the UML to help communicate
some aspects of a system. [...]

Sketches are also useful in doc-
uments, in which case the focus
is communication ra- ther than
completeness. [...]

The tools used for sketching are
lightweight drawing tools and of-
ten people aren’t too particular
about keeping to every strict rule
of the UML.

Most UML diagrams shown
in books, such as mine, are
sketches. Their emphasis is on
selective communication rather
than complete specification.

Hence my sound-bite “compre-

hensiveness is the enemy of com-

prehensibility”

Blueprint

[...] In forward engineering the
idea is that blueprints are devel-
oped by a designer whose job is
to build a detailed design for a
programmer to code up.

That design should be suffi-
ciently complete that all design
decisions are laid out and the
programming should follow as
a pretty straightforward activity
that requires little thought. [...]

Blueprints require much more
sophisticated tools than sketches
in order to handle the details re-
quired for the task. [...]

Forward engineering tools sup-

port diagram drawing and back

it up with a repository to hold

the information. [...]

Programming Language

If you can detail the UML
enough, and provide semantics
for everything you need in soft-
ware, you can make the UML be
your programming language.

Tools can take the UML di-
agrams you draw and compile
them into executable code.

The promise of this is that UML
is a higher level language and
thus more productive than cur-
rent programming languages.

The question, of course, is
whether this promise is true.

I don’t believe that graphical

programming will succeed just

because it’s graphical. [...]



UML-Mode of the Course

–
1
–
2
0
1
5
-1
0
-2
0
–
S
m
o
ti
va

ti
o
n
–

11/36

The “mode” fitting the lecture best is AsBlueprint.

Aim of the Course:

• show that UML can be precise — to avoid misunderstandings.

• allow formal analysis of models on the design level — to find errors early.

• be consistent with (informal semantics in) OMG (2011b) as far as possible.

Side Effects: After the course, you should. . .

• have a good working knowledge of UML,

• have a good working knowledge of software modelling,

• be able to efficiently and effectively work in AsSketch mode,

• be able to define your own UML semantics for your context/purpose,
or define your own Domain Specific Languages as needed.

The Lecture: Content and Non-Content

–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

12/36



Course Map

–
1
–
2
0
1
5
-1
0
-2
0
–
S
co

n
te
n
t
–

13/36

VendingMachine

Water_enabled : int
Soft_enabled : int
Tea_enabled : int

+disable_all():void
+enable_Water():void
+enable_Soft():void
+enable_Tea():void
+WATER()
+SOFT()
+TEA()
+ChoicePanel()

:ChoicePanel
1

+giveback_100():void
+giveback_50():void

:Changer
1

+Prepare_Water():void
+Prepare_Soft():void
+Prepare_Tea():void
+DWATER()
+DTEA()
+DSOFT()
+FILLUP()

:DrinkDispenser
1

+fallthrough():void
+update_ChoicePanel()
+C50()
+E1()
+OK()

:CoinValidator
1

1

1

1

1

1

1

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser

->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

LSC: buy water
AC: true

AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

water in stock

dWATER

OK

UML
M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, cons i,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

Table of Contents

–
1
–
2
0
1
5
-1
0
-2
0
–
S
co

n
te
n
t
–

14/36

• Introduction (VL 01)

• Semantical Domain (VL 01–02)

Modelling Structure:

• OCL (VL 03–04)

• Object Diagrams (VL 05)

• Class Diagrams (VL 06–09)

• Modelling Guidelines (VL 10)

Modelling Behaviour:

• Constructive:
Simple State Machines (VL 11–13)
Hierarchical State Machines (VL 14–15)
Code Generation (VL 16)

• Reflective:
Live Sequence Charts (VL 17–18)

The Rest:

• Inheritance (VL 19–20)

• Meta-Modeling (VL 21)

• Putting it all together: MDA, MDSE (VL 22)



Table of Non-Contents

–
1
–
2
0
1
5
-1
0
-2
0
–
S
co

n
te
n
t
–

15/36

Everything else, including

• Development Process
UML is only the language for artefacts. But: we’ll discuss exemplarily,
where in an abstract development process which means could be used.

• How to come up with a good design
UML is only the language to write down designs.
But: we’ll have a couple of examples.

• Artefact Management
Versioning, Traceability, Propagation of Changes.

• Every little bit and piece of UML
Boring. Instead we learn how to read the standard.

• Object Oriented Programming
Interesting: inheritance is one of the last lectures.

Formalia

–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

16/36



Formalia: Lectures

–
1
–
2
0
1
5
-1
0
-2
0
–
S
fo
rm

a
li
a
–

17/36

• Lecturer: Dr. Bernd Westphal

• Support: Milan Vujinovic

• Homepage: http://swt.informatik.uni-freiburg.de/teaching/WS2015-16/sdmauml

• Time/Location: Tuesday, Thursday, 10:00 – 12:00 / here (building 51, room 03-026)

• Course language: English
(slides/writing, presentation, questions/discussions)

• Presentation:
half slides/half on-screen hand-writing — for reasons

• Script/Media:

• slides with annotations on homepage,
typically soon after the lecture

• recording on ILIAS with max. 1 week delay
(links on homepage)

• Break:

• We’ll have a 10 min. break in the middle of each event from now on,
unless a majority objects now.

Formalia: Exercises and Tutorials

–
1
–
2
0
1
5
-1
0
-2
0
–
S
fo
rm

a
li
a
–

18/36

• You should work in groups of approx. 3, clearly give names on submission.

• Please submit via ILIAS (cf. homepage); paper submissions are tolerated.

• Schedule:

Week N , Thursday, 10–12 Lecture A1 (exercise sheet A online)
Week N + 1, Tuesday 10–12 Lecture A2

Thursday 10–12 Lecture A3
Week N + 2, Monday, 12:00 (exercises A early submission)

Tuesday, 10:00 (exercises A late submission)
10–12 Tutorial A

Thursday 10–12 Lecture B1 (exercise sheet B online)

• Rating system: “most complicated rating system ever”

• Admission points (good-will rating, upper bound)
(“reasonable proposal given student’s knowledge before tutorial”)

• Exam-like points (evil rating, lower bound)
(“reasonable proposal given student’s knowledge after tutorial”)

10% bonus for early submission.

• Tutorial: Plenary, not recorded.

• Together develop one good solution based on selection of early submissions
(anonymous) — there is no “Musterlösung” for modelling tasks.



Formalia: Exam

–
1
–
2
0
1
5
-1
0
-2
0
–
S
fo
rm

a
li
a
–

19/36

• Exam Admission:

Achieving 50% of the regular admission points in total
is sufficient for admission to exam.

Typically, 20 regular admission points per exercise sheet.

• Exam Form:

• oral for BSc and on special demand (Erasmus),

• written for everybody else (if sufficiently many candidates remain).

Scores from the exercises do not contribute to the final grade.

• Exam Date:

Remind me in early December that we need to agree on an exam date.

User’s Guide

–
1
–
2
0
1
5
-1
0
-2
0
–
S
fo
rm

a
li
a
–

20/36

• Approach:

The lectures is supposed to work as a lecture: spoken word + slides + discussion

It is not our goal to make any of the three work in isolation.

• Interaction:

Absence often moaned but it takes two: please ask/comment immediately.

• Exercise submissions:

Each task is a tiny little scientific work:

(i) Briefly rephrase the task in your own words.

(ii) State your claimed solution.

(iii) Convince your reader that your proposal is a solution (proofs are very convincing).



User’s Guide

–
1
–
2
0
1
5
-1
0
-2
0
–
S
fo
rm

a
li
a
–

20/36

• Approach:

The lectures is supposed to work as a lecture: spoken word + slides + discussion

It is not our goal to make any of the three work in isolation.

• Interaction:

Absence often moaned but it takes two: please ask/comment immediately.

• Exercise submissions:

Each task is a tiny little scientific work:

(i) Briefly rephrase the task in your own words.

(ii) State your claimed solution.

(iii) Convince your reader that your proposal is a solution (proofs are very convincing).

Example:

Task: Given a square with side length a = 19.1. What is the length of the
longest straight line fully inside the square?

Submission A: Submission B:

27

The length of the longest straight
line fully inside the square with side
length a = 19.1 is 27.01 (rounded).

The longest straight line inside the
square is the diagonal. By Pythago-
ras, its length is

√
a2 + a2. Inserting

a = 19.1 yields 27.01 (rounded).

User’s Guide

–
1
–
2
0
1
5
-1
0
-2
0
–
S
fo
rm

a
li
a
–

20/36

• Approach:

The lectures is supposed to work as a lecture: spoken word + slides + discussion

It is not our goal to make any of the three work in isolation.

• Interaction:

Absence often moaned but it takes two: please ask/comment immediately.

• Exercise submissions:

Each task is a tiny little scientific work:

(i) Briefly rephrase the task in your own words.

(ii) State your claimed solution.

(iii) Convince your reader that your proposal is a solution (proofs are very convincing).

Example:

Task: Given a square with side length a = 19.1. What is the length of the
longest straight line fully inside the square?

Submission A: Submission B:

27

The length of the longest straight
line fully inside the square with side
length a = 19.1 is 27.01 (rounded).

The longest straight line inside the
square is the diagonal. By Pythago-
ras, its length is

√
a2 + a2. Inserting

a = 19.1 yields 27.01 (rounded).
✘ ✔



Literature

–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

21/36

Literature: Modelling

–
1
–
2
0
1
5
-1
0
-2
0
–
S
li
t
–

22/36

•

• W. Hesse, H. C. Mayr: Modellierung in der Soft-
waretechnik: eine Bestandsaufnahme,
Informatik Spektrum, 31(5):377-393, 2008.

• O. Pastor, S. Espana, J. I. Panach, N. Aquino:
Model-Driven Development,
Informatik Spektrum, 31(5):394-407, 2008.

• M. Glinz: Modellierung in der Lehre an
Hochschulen: Thesen und Erfahrungen,
Informatik Spektrum, 31(5):408-424, 2008.

http://www.springerlink.com/content/0170-6012

• U. Kastens, H. Kleine Büning: Modellierung – Grundlagen und Formale Methoden, 2.
Auflage, Hanser-Verlag, 2008.



Literature: UML

–
1
–
2
0
1
5
-1
0
-2
0
–
S
li
t
–

23/36

• OMG: Unified Modeling Language Specification, Infrastructure, 2.4.1

• OMG: Unified Modeling Language Specification, Superstructure, 2.4.1

• OMG: Object Constraint Language Specification, 2.0

All three: http://www.omg.org (cf. hyperlinks on course homepage)

• A. Kleppe, J. Warmer: The Object Constraint Language,
Second Edition, Addison-Wesley, 2003.

• D. Harel, E. Gery: Executable Object Modeling with Statecharts,
IEEE Computer, 30(7):31-42, 1997.

• B. P. Douglass: Doing Hard Time, Addison-Wesley, 1999.

• B. P. Douglass: ROPES: Rapid Object-Oriented Process for Embedded Systems,
i-Logix Inc., Whitepaper, 1999.

• B. Oesterreich: Analyse und Design mit UML 2.1,
8. Auflage, Oldenbourg, 2006.

• H. Stoerrle: UML 2 für Studenten, Pearson Studium Verlag, 2005.

References

–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

35/36



References

–
1
–
2
0
1
5
-1
0
-2
0
–
m
a
in

–

36/36

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM,
49(5):109–114.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen.
Informatik Spektrum, 31(5):425–434.

Khoshnevis, B. (2004). Automated construction by contour crafting — related robotics and
information technologies. Journal of Automation in Construction, 13:5–19.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.


