Software Design, Modelling and Analysis in UML

Lecture 5: Object Diagrams

2015-11-05

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

2015-11-05

OCL Satisfaction Relation

In the following, . denotes a signature and 7 a structure of ..

Definition (Satisfaction Relation).

Let ¢ be an OCL constraint over . and o € ¥% a system state.
We write

o o = if and only if I[¢](0,0) = true.

o o b= ¢ if and only if I[¢](o,0) = false.

A~

v
o

Note: In general we can’t conclude from —(c |=) to o £ i or vice versa.

Contents & Goals

Last Lecture:
* OCL Semantics

This Lecture:

« Educational Objectives: Capabilities for following tasks/questions.
« What does it mean that an OCL expression is satisfiable?
* When is a set of OCL constraints said to be consistent?

© What is an object diagram? What are object diagrams good for?

When is an object diagram called partial? What are partial ones good for?
« When is an object diagram an object diagram (wrt. what)?

 How are system states and object diagrams related?

.

Can you think of an object diagram which violates this OCL constraint?

Content:

« OCL: consistency, satisfiability

« Object Diagrams
2« Example: Object Diagrams for Documentation

1 233
OCL Consistency
n (Consistency). Aset Inv={p1,..., .} of OCL constraints
over . is called consistent (or satisfiable) if and only if there exists a
system state of .7 wrt. Z which satisfies all of them, i.e. if
Joe3l:okp1 AA dEYa
and inconsistent (or unsatisfiable) otherwise.
53

OCL Satisfaction Relation

15-11-05 - main —

e: ?
Example: OCL Consistent $= Qi\é PR

Terk)? Lf, T b fuuckyy 3
Sy,)

o context Location inv : name = 'Lobby' implies meeting -> isEmpty() <%
o context Meeting inv : title = 'Reception’ implies location . name = ._.33
ot

StANCeS yfecting ~> exists(w : Meeting | w . title = 'Reception’)

Deciding OCL Consistency

o Whether a set of OCL constraints is consistent or not
n general not as obvious as in the made-up example.

* Wanted: A procedure which decides the OCL satisfiability problem.

o Unfortunately: in general undecidable.

OCL is as expressive as first-order logic over integers.

Fxy e xy>2 is A7, ukuuw

%aAR $C7, fr:Cy, q“mxw_ MNI?QWW

T |
Al Vshnecs, > p3sts (i ¢l cox>oal) - cyssul)>2n)

2015-

OCL Critique

o Concrete Syntax / Features

"The syntax of OCL has been criti
for being hard to read and write.

ized - e.g., by the authors of Catalysis [..] -

* OCL’s expressions are stacked in the style of Smalltalk,
which makes it hard to see the scope of quantified variables.

« Navigations are applied to atoms and not sets of atoms,
although there is a collect operation that maps a function over a set.

OCL, and result in expressions with

o Attributes, [...], are partial function:
undefined value.” Jackson (2002)

20151

k 933

Deciding OCL Consistency

~5-2015.

Whether a set of OCL constraints is consistent or not
is in general not as obvious as in the made-up example.

* Wanted: A procedure which decides the OCL satisfiability problem.
AARAAR

o Unfortunately: in general undecidable.

OCL s as expressive as first-order logic over integers.

« And now? Options: Cabot and Clarisé (2008)
» Constrain OCL, use a less rich fragment of OCL.
© Revert to finite domains — basic types vs. number of objects.

e

OCL Critique

20151

« Expressive Power:
“Pure OCL expressions only compute primitive recursive functions, but not
recursive functions in general.” Cengarle and Knapp (2001)

« Evolution over Time:
Proposals for fixes e.g. Flake and Miiller (2003). (Or: sequence diagrams.)

« Real-Time: “Objects respond within 10s”
Proposals for fixes e.g. Cengarle and Knapp (2002)

« Reachability: “After insert operation, node shall be reachable.

Fix: add transitive closure.

10/33

OCL Critique

What Is OCL Good For:

8/33

What’s It Good For?

2015-11-05

=

e Most prominent:
Formalise requirements supposed to be satisfied by all system states.

“the choice panels of a VM should be consistent”

Exampl

context VM inv : {true, false} -> exists(b | cp => forAll(c |

e Not unknown:
Formalise pre/post-conditions of methods (Behavioural Features).
Then evaluated over two system states (before/after executing the method).

Example: “the dispense water method should decrement win”
context DD :: dispense W pre : win > 0
: win = win@ pre —
post : win = win@ pre —1
o Common with State Machines: Guards in transitions.
Dispense W [win > 0]/ dispense_ W
g Qe ek,

o Lesser known: Specify operation bodies.

ng: the UML standard is a MOF-model of UML.
OCL expressions define well-formedness of UML models (cf. Lecture ~ 21).

Object Diagrams

015-11-05 - main

1233

15/33

2015-11-05

Where Are We?

Recall: Graph

2015-11.05 - Sod -

Definition. A node-labelled graph is a triple
nogE
G=(N,E,f)

consisting of
e vertexes N,

o edges F,
© node labeling f : N — X, where X is some label domain,

1333

16/33

You Are Here.

N S
mHh&,s..nc,mx,l%.wz;

Lm0l (51 1) etz = (o, consi, Snd;))jen

015-11-05 — Spostmap -

1433

Object Diagrams

Definition. Let 9 be a structure of signature & = (%, V; air) and
7 € 0% a system state.

Then any node-labelled graph G = (N, E, f) where
« nodes are identities (not necessarily alive), i.e. N C 2(%) finite,
» edges correspond to “links” of objects, i.e.

ECNx{v:TeV|Té&{Cos,C. ,Qmﬂ:v&_ﬁ
.

- =: Vo1 -
Tl
2) € E : uy € dom(0) Auz € o(w)(r),

e
wodss.
© bbjeets are labelled with attribute valuations, and non-alive identities
with “X", i.e.
X = {Xx}0(V - (2(7) =)
Yu e Nndom(a) : f(u) C o(u)
Vu € N\ dom(o) : f(u) = {X}

is called object diagram of 0.

17/3

Object Diagram: Examples

o« N C 2(%) finite EC N x Voue X N ¥ (ui,r,uz) € B : uy € dom(o) Aus € o(ur)(r),
N =X o X = {X}U (V»(2(7) &) » f(u) C ou) / f(u) = {X} if u ¢ dom(o)

S = ({Int} {CY {x: Int,y : Int,r: C.}{C = {z,y,7}}), 2(Int)=1Z

o={lcm {z =1Ly 2r o {lc,3c}}} Nw
Pt
-/
« G =(N,E.f) with . 7
o nodes N = {le,3c) =" _ -~
o edges £ = {(Torr10), (16, 30)). S & kdae &

~
© node labelling f = {1¢ = {z = 1,y = 2},3¢ — X}

is an object diagram of 0.

Complete vs. Partial: Examples

o N C (%) finite o ECNxVoue x N oV (u1,r,u2) € E: uy € dom(o) Auz € a(ur)(r),
S fiIN X e X = {X}U(V(2(T) L)) * f(uw) Colw) / f(w) = {X} if u ¢ dom(o)

= (It} ACH{z : Int,y s Int,r: O3 {C > {vr,v0,7}}), Z(Int) =7

o={lem {2 Ly 2,00 {20,3¢}), 20— {2 13,y 27,7 0}},

proel (g wisig 2 2)

R pashiaf

2133

Object Diagram: More Examples?

o N C 9(¢€) finite o ECN xVoru XN oV (u1,ruz2) € E : uy € dom(o) Auz € o(ur)(r),
S fiN =X e X ={X}U(V»(2(7)ZFE))) * f(u) C o) / f(u) = {X} if u ¢ dom(o)

S = () (CY (o s Intyy = Intyr: C.1{C = (Mg}, 9(In) =2

o={lc—{z— Ly~ 2,r—{2c}}, 2c~ {z— 13,y 27,1 > 0}},

lo:C r
o |lr=1
y=2
. ! o]/
lo:C
o z=1 2c:C
v=
o [lc:C .\
. ,\
1933
Complete/Partial is Relative
« Each (consistent) object diagram G represents a set of system states, namely
G~ := {0 € £% | G is an object diagram of o'} o -
- ca /

: 167" >4
« How many? 1
Mkl oy =] 2

o Each finite system state has exactly one complete object diagram.

o A finite system state can have many partial object diagrams

o Observation:
If somebody tells us for a given (consistent) object diagram G
* that it is meant to be complete, and eﬂ
o if it is not inherently incomplete (e.g. missing attribute values),

then it uniquely denotes the corresponding system state, denoted by o(G).

Therefore we can use complete object diagrams exchangeably with system states.

20151

Complete vs. Partial Object Diagram

2233

Definition. Let G = (N, E, f) be an object diagram of system state o € X%
We call G complete wrt. o if and only if

o G is object complete,

© @ consists of all alive and “linked” non-
N = dom(o) U {u | 3us € 2(%),7 € Vo o u € o(ur)(r)}

o G is attribute complete, i.e.

© G comprises all “links” between objects, i.e. if and only if u € o'(u1)(r)
for some w1, u> € Z(%) and r € V, then (u1,r,uz) € B, and

« each node is labelled with the values of all .7-typed attributes,

i.e. for each u € dom(c), \ fameior, restoc b,
f) = o(w)lvy
where Vg :={v:T eV |Te T}

Otherwise we call G partial

20733
Non-Standard Notation
o S =({Int}. {C} {n,p: C:} . {C > {n,p}}).
o Instead of
10— _5.c
we want to write
= 5c:C
e
n=0
or
to explicitly indicate that attribute p : C.. has value § (also for p: Cp.1).
2333

015-11.05

UML Object Diagrams

The Other Way Round

24/33

2733

UML Notation for Object Diagrams

- Y
S 1
optional — ‘V\)ﬂ
o
“compartment”
apebade : optional
valay
{L\ﬂ?“ﬁm{&& R ~ optional
9 {24
% VazgiS X
Dt debles
g g ¢

From Object Diagram to Signature / Structure

o If we only have a diagram :_a\sAmw
n

c 2:C

assume that it is meant to be
gram wrt. some signature and structure.

we typicall
an object

In the example, we conclude that the author is referring to some
S = (F,%€,V. atr) with at least

LRt

s TeT

o 23 C ak(d)

o Lol € a(e)

and a structure 7 with
o (el € Dt

o 2, DY
s 0cd(T)

28/33

Discussion

We slightly deviate from the standard (for reasons):

* We allow to show non-alive objects.

o Allows us to represent “dangling references”,
i.e. references to objects which are not alive in the current system state.

We introduce a graphical representation of () values.

o Easier to distinguish partial and complete object diagrams.

o In the course, Cy; and C,-typed attributes only have sets as values.
UML also considers multisets, that is, they can have

This is not an object diagram in the sense of our d
because of the requirement on the edges .
Extension is straightforward but tedious.

26/33

Example: Object Diagrams for Documentation

11:05 - main —

2933

Example: Data Structure (s

etal, 2008)

Sodatwork

2015-11-05

BaseNode
 parent : BaseNode.
+ prevSibling - BaseNode, _ poge
-+ nextSibling - BaseNode.

-+ firstChild - BaseNode.
+ lastChild BaseNode.

operator () Terator
+ operator-——() : herator
+ operators() - BaseNode

T appendTopLevell dats T
+ appendChild(parent : lterator, data : T)

a6 T
+ Node(data

)

30733

References

Cabot, J. and Clarisé, R. (2008). UML-OCL verification in practice. In Chaudron, M. R. V.,
editor, MoDELS Workshops, volume 5421 of Lecture Notes in Computer Science. Springer.

Cengarle, M. V. and Knapp, A. (2001). On the expressive power of pure OCL. Technical Report
0101, Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen

Cengarle, M. V. and Knapp, A. (2002). Towards OCL/RT. In Eriksson, L.-H. and Lindsay, P. A.,
editors, FME, volume 2391 of Lecture Notes in Computer Science, pages 390-409.
Springer-Verlag.

nted OCL

and temporal state-or

Flake, S. and Miiller, W. (2003). Formal semantics of sta
constraints. Software and Systems Modeling, 2(3):164-186.

Jackson, D. (2002). Alloy: A lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology, 11(2):256-290.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
= formal /2011-08-06

£ Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical
., documentation, version 1.0. Technical report, Carl von Ossietzky Universitit Oldenburg und

OFFIS. 3m

n et al, 2008)

Example: Illustrative Object Diagram (s

begin it end it

| : Forest |

| Se—

end : BaseNode

FrstChid parent

pressib

20151105 - Sodatwork —

2015.11-05 — main -

References

3233

