Software Design, Modelling and Analysis in UML

Lecture 6: Class Diagrams I

2015-11-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Course Map

Last Lecture:

- Object Diagrams
- partial vs. complete; for analysis; for documentation...

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What is a class diagram?
- For what purposes are class diagrams useful?
- Could you please map this class diagram to a signature?
- Could you please map this signature to a class diagram?
- Content:
- Study UML syntax.
- Prepare (extend) definition of signature.
- Map class diagram to (extended) signature.
- Stereotypes.

Recall: Signature vs. Class Diagram

That'd Be Too Simple

What Do We Want / Have to Cover?

A class

- has a set of stereotypes,
- has a name, $\sqrt{ }$
- belongs to a package,
- can be abstract,
- can be active,

Each attribute has

- a visibility
- a name, a type,
- a multiplicity, an order, (later)

- an initial value, and
- a set of properties, such as readOnly, ordered, etc.

Wanted: places in the signature to represent the information from the picture.

Extended Signature

Definition. An (Extended) Object System Signature is a quadruple $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r)$ where

- \mathscr{T} is a set of (basic) types,
- \mathscr{C} is a finite set of classes $\left\langle C, S_{C}, a, t\right\rangle$ where
- S_{C} is a finite (possibly empty) set of stereotypes,
- $a \in \mathbb{B}$ is a boolean flag indicating whether C is abstract,
- $t \in \mathbb{B}$ is a boolean flag indicating whether C is active,
- V is a finite set of attributes $\left\langle v: T, \xi, \operatorname{expr}_{0}, P_{v}\right\rangle$ where or: \boldsymbol{B}^{β}
- T is a type from \mathscr{T}, or $C_{0,1}, C_{*}$ for some $C \in \mathscr{C}$,
- $\xi \in\{\underbrace{\text { public, }}, \underbrace{\text { private }}_{=-}, \underbrace{\text { protected }}, \underbrace{\text { package }}\}$ is the visibility, $\underbrace{\text { public }}_{:=+}, \underbrace{\text { rivate }}_{:=-}, \underbrace{\text { protected }}_{:=\#}, \underbrace{\text { package }}_{:=\sim}\}$ is the visibity, \in
- an initial value expression expr given as a word from a language for initial value expressions, e.g. OCL, or $\mathrm{C}++$ in the Rhapsody tool,
- a finite (possibly empty) set of properties P_{v}.
- atr : $\mathscr{C} \rightarrow 2^{V}$ maps each class to its set of attributes.

We use $S_{\mathscr{C}}$ to denote the set $\bigcup_{C \in \mathscr{C}} S_{C}$ of stereotypes in \mathscr{S}.

Conventions

- We write $\left\langle C, S_{C}, a, t\right\rangle$ if we want to refer to all aspects of C.
- If the new aspects are irrelevant (for a given context), we simply write C_{j} i.e. old definitions are still valid.
- We write $\left\langle v: T, \xi, \operatorname{expr}_{0}, P_{v}\right\rangle$ if we want to refer to all aspects of v.
- Write only $v: T$ or v if details are irrelevant.
- Note:

All definitions we have up to now principally still apply as they are stated in terms of, e.g., $C \in \mathscr{C}$ - which still has a meaning with the extended view.

For instance, system states and object diagrams will remain mostly unchanged.

- The other way round: most of the newly added aspects do not contribute to the constitution of system states or object diagrams.

Mapping UML Class Diagrams to Extended Signatures

A class box n induces an (extended) signature class as follows:

where

- "abstract" is determined by the font:
$a(n)= \begin{cases}\text { true } & , \text { if } n=\boxed{C} \text { or } n=C_{\{A\}} \\ \text { false } & \text {, otherwise }\end{cases}$
- "active" is determined by the frame:

$$
t(n)= \begin{cases}\text { true } & , \text { if } n=\mathrm{C} \\ \text { false } & \text { or } n=\text {, otherwise }\end{cases}
$$

```
Example
\begin{tabular}{c}
\(\left\langle\left\langle S_{1}, \ldots, S_{k}\right\rangle\right\rangle\) \\
\(C\) \\
\hline\(\xi_{1} v_{1}: T_{1}=\operatorname{expr} r_{0}^{1}\left\{P_{1,1}, \ldots, P_{1, m_{1}}\right\}\) \\
\(\vdots\) \\
\(\xi_{\ell} v_{\ell}: T_{\ell}=\operatorname{expr} r_{0}\left\{P_{\ell, 1}, \ldots, P_{\ell, m_{\ell}}\right\}\) \\
\hline
\end{tabular}
\(\mathfrak{k}\)
    \(C(n):=\left\langle C,\left\{S_{1}, \ldots, S_{k}\right\}, a(n), t(n)\right\rangle\)
    \(V(n):=\left\{\left\langle v_{1}: T_{1}, \xi_{1}, \operatorname{expr} r_{0}^{1},\left\{P_{1,1}, \ldots, P_{1, m_{1}}\right\}\right\rangle, \ldots\right.\),
        \(\left.\left\langle v_{\ell}: T_{\ell}, \xi_{\ell}, \operatorname{expr} r_{0}^{\ell},\left\{P_{\ell, 1}, \ldots, P_{\ell, m_{\ell}}\right\}\right\rangle\right\}\)
        \(\operatorname{atr}(n):=\left\{C \mapsto\left\{v_{1}, \ldots, v_{\ell}\right\}\right\}\)
```


$$
\begin{aligned}
& V(n)=\left\{\left\langle r: C_{0, n}^{1},+ \text {, exp }, \varnothing\right\rangle\right. \text {, } \\
& \langle v: \ln t,-27, \varnothing\rangle \text {, } \\
& <s: D_{*}, \text { ? }
\end{aligned}
$$

What If Things Are Missing?

It depends.

- What does the standard say? (OMG, 2011a, 121)

"Presentation Options.

The type, visibility, default, multiplicity, property string may be suppressed from being displayed, even if there are values in the model."

- Visibility: There is no "no visibility" - an attribute has a visibility in the (extended) signature.
Some (and we) assume public as default, but conventions may vary.
- Initial value: some assume it given by domain (such as "leftmost value", but what is "leftmost" of \mathbb{Z} ?).
Some (and we) understand non-deterministic initialisation if not given.
- Properties: probably safe to assume \emptyset if not given at all.

Example Cont'd

$$
\begin{gathered}
\begin{array}{|}
\left.\hline\left\langle S_{1}, \ldots, S_{k}\right\rangle\right\rangle \\
C \\
\hline \xi_{1} v_{1}: T_{1}=\operatorname{expr} r_{0}^{1}\left\{P_{1,1}, \ldots, P_{1, m_{1}}\right\} \\
\vdots \\
\xi_{\ell} v_{\ell}: T_{\ell}=\operatorname{expr} r_{0}^{\ell}\left\{P_{\ell, 1}, \ldots, P_{\ell, m_{\ell}}\right\}
\end{array} \\
\vdots \\
C(n):=\left\langle C,\left\{S_{1}, \ldots, S_{k}\right\}, a(n), t(n)\right\rangle \\
V(n):=\left\{\left\langle v_{1}: T_{1}, \xi_{1}, \operatorname{expr} r_{0}^{1},\left\{P_{1,1}, \ldots, P_{1, m_{1}}\right\}\right\rangle, \ldots,\right. \\
\left.\left\langle v_{\ell}: T_{\ell}, \xi_{\ell}, \operatorname{expr} r_{0}^{\ell},\left\{P_{\ell, 1}, \ldots, P_{\ell, m_{\ell}}\right\}\right\rangle\right\} \\
\operatorname{atr}(n):=\left\{C \mapsto\left\{v_{1}, \ldots, v_{\ell}\right\}\right\}
\end{gathered}
$$

$\left\langle\left\langle\right.\right.$ Stereotype $_{1}, \ldots$, Stereotype $\left._{n}\right\rangle$
Package ::C
$+r: \mathrm{C}_{0,1}=\operatorname{expr}$
$s: \mathrm{D}_{*}\{$ ordered $\}$
$-v:$ Int $=27$
$w:$ Float $\{$ readOnly $\}$

$$
\begin{aligned}
& \frac{i}{\left\langle s: D_{*},+, 2,\{\text { ordered }\}\right\rangle} \\
& \left\langle S: D_{*},+, \infty,\{\text { ordered }\}\right\rangle
\end{aligned}
$$

From Class Diagrams to Extended Signatures

- We view a class diagram $\mathcal{C D}$ as a graph with nodes $\left\{n_{1}, \ldots, n_{N}\right\}$
(each "class rectangle" is a node).
- $\mathscr{C}(\mathcal{C D}):=\left\{C\left(n_{i}\right) \mid 1 \leq i \leq N\right\}$
- $V(\mathcal{C D}):=\bigcup_{i=1}^{N} V\left(n_{i}\right)$
- $\operatorname{atr}(\mathcal{C D}):=\bigcup_{i=1}^{N} \operatorname{atr}\left(n_{i}\right)$
- In a UML model, we can have finitely many class diagrams,

$$
\mathscr{C D}=\left\{\mathcal{C D}_{1}, \ldots, \mathcal{C} \mathcal{D}_{k}\right\}
$$

which induce the following signature:

$$
\mathscr{S}(\mathscr{C} \mathscr{D})=\left(\mathscr{T}, \bigcup_{i=1}^{k} \mathscr{C}\left(\mathcal{C D}_{i}\right), \bigcup_{i=1}^{k} V\left(\mathcal{C D} \mathcal{D}_{i}\right), \bigcup_{i=1}^{k} \operatorname{atr}\left(\mathcal{C D}_{i}\right)\right)
$$

(Assuming \mathscr{T} given. In "reality" (i.e. in full UML), we can introduce types in class diagrams, the class diagram then contributes to \mathscr{T}. Example: enumeration types.)

Is the Mapping a Function?
Question: Is $\mathscr{S}(\mathscr{C} \mathscr{D})$ well-defined?

References

References

Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8. Auflage. Oldenbourg, 8. edition.
OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical documentation, version 1.0. Technical report, Carl von Ossietzky Universität Oldenburg und OFFIS.

