
–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 7: Class Diagrams II

2015-11-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
7
–
2
0
1
5
-1
1
-1
7
–
S
p
re
li
m

–

2/23

Last Lecture:

• Representing class diagrams as (extended) signatures — for the moment without
associations: later.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• Could you please map this class diagram to a signature?

• What if things are missing?

• Could you please map this signature to a class diagram?

• What is the semantics of ‘abstract’?

• What is visibility good for?

• Content:

• Map class diagram to (extended) signature cont’d.

• Stereotypes – for documentation.

• Visibility as an extension of well-typedness.



Mapping UML CDs to Extended Signatures

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

3/23

Recall

–
7
–
2
0
1
5
-1
1
-1
7
–
S
cd

m
a
p
–

4/23

Example Cont’d

–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

15/27

〈〈S1, . . . , Sk 〉〉
C

ξ1 v1 : T1 = expr1
0
{P1,1, . . . , P1,m1

}
...

ξℓ vℓ : Tℓ = expr ℓ
0
{Pℓ,1, . . . , Pℓ,mℓ

}

 

C(n) := 〈C, {S1, . . . , Sk}, a(n), t(n)〉

V (n) := {〈v1 : T1, ξ1, expr
1

0
, {P1,1, . . . , P1,m1

}〉, . . . ,

〈vℓ : Tℓ, ξℓ, expr
ℓ
0
, {Pℓ,1, . . . , Pℓ,mℓ

}〉}

atr(n) := {C 7→ {v1, . . . , vℓ}}

〈〈Stereotype
1
, . . . , Stereotype

n
〉〉

Package::C

+ r : C0,1 = expr

s : D∗ {ordered}

− v : Int = 27
w : Float {readOnly}

A

y : Int B
{A}

D
x : Int



Is the Mapping a Function?

–
7
–
2
0
1
5
-1
1
-1
7
–
S
cd

m
a
p
–

5/23

Question: Is S (CD) well-defined?

There are two possible sources for problems:

(1) A class C may appear in multiple class diagrams:

(i)

C
v : Int

CD1

C
w : Int

CD2

(ii)

C
v : Int

CD1

C
v : Bool

CD2

Simply forbid the case (ii) — easy syntactical check on diagram.

Is the Mapping a Function?

–
7
–
2
0
1
5
-1
1
-1
7
–
S
cd

m
a
p
–

6/23

(2) An attribute v may appear in multiple classes with different type:

C
v : Bool

D
v : Int

Two approaches:

• Require unique attribute names.
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

C::v or D::v

depending on the context. (C::v : Bool and D::v : Int are then unique.)

• Subtle, formalist’s approach: observe that

〈v : Bool , . . . 〉 and 〈v : Int , . . . 〉

are different things in V . We don’t follow that path. . .



Class Diagram Semantics

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

7/23

Semantics

–
7
–
2
0
1
5
-1
1
-1
7
–
S
cd

se
m

–

8/23

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type T , i.e. the set D(T ), would be

determined by the class diagram, and not free for choice.)



Semantics

–
7
–
2
0
1
5
-1
1
-1
7
–
S
cd

se
m

–

8/23

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type T , i.e. the set D(T ), would be

determined by the class diagram, and not free for choice.)

• What is the effect on ΣD
S
? Little.

For now, we only remove abstract class instances, i.e.

σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗)))

is now only called system state if and only if, for all 〈C, SC , 1, t〉 ∈ C ,

dom(σ) ∩ D(C) = ∅.

With a = 0 as default “abstractness”, the earlier definitions apply directly.
(We’ll revisit this when discussing inheritance.)

What About The Rest?

–
7
–
2
0
1
5
-1
1
-1
7
–
S
cd

se
m

–

9/23

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value expression: not represented in σ.

Later: provides an initial value as effect of “creation action”.

• Visibility: not represented in σ.

Later: viewed as additional typing information for well-formedness of actions; and

with inheritance.

• Properties: such as readOnly, ordered, composite (Deprecated in the standard.)

• readOnly — later treated similar to visibility.

• ordered — not considered in our UML fragment (→ sets vs. sequences).

• composite — cf. lecture on associations.



Rhapsody Demo I

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

10/23

Visibility

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

11/23



The Intuition by Example

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

12/23

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n},D 7→ {x,m}}

C

D
ξ x : Int = expr

0× •
n

0, 1

×

•
m

0, 1

c : C d1 : D

x = 1
d2 : D

n m

The Intuition by Example

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

12/23

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n},D 7→ {x,m}}

C

D
ξ x : Int = expr

0× •
n

0, 1

×

•
m

0, 1

c : C d1 : D

x = 1
d2 : D

n m

Assume w1 : τC and w2 : τD are logical variables.

Which of the following syntactically correct (?) OCL expressions
should we consider to be well-typed?

ξ of x: public private protected package

w1 . n . x = 0 later not

w2 . m . x = 0 later not



The Intuition by Example

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

12/23

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n},D 7→ {x,m}}

C

D
ξ x : Int = expr

0× •
n

0, 1

×

•
m

0, 1

c : C d1 : D

x = 1
d2 : D

n m

Assume w1 : τC and w2 : τD are logical variables.

Which of the following syntactically correct (?) OCL expressions
should we consider to be well-typed?

ξ of x: public private protected package

w1 . n . x = 0 ✔ ✔ later not

✘ ✘

? ?

w2 . m . x = 0 ✔ ✔ later not

✘ ✘

? ?

Context

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

13/23

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n}, D 7→ {x,m}}

• By example:

C

D
− x : Int

n

0, 1
m

0, 1

self D . x > 0

self D . m . x > 0

self C . n . x > 0



Context

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

13/23

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr
0
, ∅〉},

{C 7→ {n}, D 7→ {x,m}}

• By example:

C

D
− x : Int

n

0, 1
m

0, 1

self D . x > 0

self D . m . x > 0

self C . n . x > 0

• That is, whether an expression involving attributes with visibility is well-typed
depends on the class of objects for which it is evaluated.

• Visibility is ‘by class’ — not ‘by object’.

Attribute Access in Context

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

14/23

Recall: attribute access in OCL Expressions, C,D ∈ C .
v(expr1) : τC → τ(v)

r1(expr1) : τC → τD

r2(expr1) : τC → Set(τD)

• v : T ∈ atr(C), T ∈ T ,

• r1 : D0,1 ∈ atr(C),

• r2 : D∗ ∈ atr(C),

New rules for well-typedness considering visibility:

• v(w) : τC → T w : τC , v : T ∈ atr(C), T ∈ T

• r1(w) : τC → τD w : τC , r1 : D0,1 ∈ atr(C)

• r2(w) : τC → Set(τD) w : τC , r1 : D∗ ∈ atr(C)

• v(expr
1
(w)) : τC → T 〈v : T, ξ, expr

0
, P〉 ∈ atr(C), T ∈ T ,

expr
1
(w) : τC , w : τC1

and C1 = C, or ξ = +

• r1(expr1(w)) : τC → τD 〈r1 : D0,1, ξ, expr0, P〉 ∈ atr(C),

expr
1
(w) : τC , w : τC1

and C1 = C, or ξ = +

• r2(expr1(w)) : τC → Set(τD) 〈r2 : D∗, ξ, expr0, P〉 ∈ atr(C),

expr
1
(w) : τC , w : τC1

and C1 = C, or ξ = +



Example

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

15/23

(i) v(w) : τC → T w : τC , v : T ∈ atr(C), T ∈ T

(ii) r1(w) : τC → τD w : τC , r1 : D0,1 ∈ atr(C)

(iii) v(expr
1
(w)) : τC → T 〈v : T, ξ, expr

0
, P〉 ∈ atr(C), T ∈ T ,

expr
1
(w) : τC , w : τC1

and C1 = C, or ξ = +

(iv) r1(expr1(w)) : τC → τD 〈r1 : D0,1, ξ, expr0, P〉 ∈ atr(C),

expr
1
(w) : τC , w : τC1

and C1 = C, or ξ = +

C

D
− x : Int

n

0, 1
m

0, 1

• self D . x > 0

• self D . m . x > 0

• self C . n . x > 0

The Semantics of Visibility

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

16/23

• Observation:

• Whether an expression does or does not respect visibility
is a matter of well-typedness only.

• We only evaluate (= apply I to) well-typed expressions.

→ We need not adjust the interpretation function I to support visibility.

Just decide: should we take visibility into account yes / no,
and check well-typedness by the new / old rules.



What is Visibility Good For?

–
7
–
2
0
1
5
-1
1
-1
7
–
S
vi
si
ty
p
–

17/23

• Visibility is a property of attributes —

C

D
− x : Int× •

n

0, 1

: C : D

x = 3

nis it useful to consider it in OCL?

• In other words: given the diagram above,
is it useful to state the following invariant (even though x is private in D)

context C inv : n.x > 0 ?

It depends. (cf. OMG (2006), Sect. 12 and 9.2.2)

• Constraints and pre/post conditions:

• Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view”, i.e. be able to “look into” all objects.

• But: visibility supports “narrow interfaces”, “information hiding”, and similar good
design practices. To be more robust against changes, try to state requirements only in
the terms which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design models, leave
them public or provide get-methods (later).

• Guards and operation bodies:

• If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account.

Stereotypes

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

18/23



Stereotypes as Labels or Tags

–
7
–
2
0
1
5
-1
1
-1
7
–
S
st
er
eo

–

19/23

• What are Stereotypes?

• Not represented in system states.

• Not contributing to typing rules / well-formedness.

• Oestereich (2006):

View stereotypes as (additional) “labelling” (“tags”) or as “grouping”.

• Useful for documentation and model-driven development, e.g. code-generation:

• Documentation: e.g. layers of an architecture.

Sometimes, packages (cf. OMG (2011a,b)) are sufficient and “right”.

• Model Driven Architecture (MDA): later.

Example: Stereotypes for Documentation

–
7
–
2
0
1
5
-1
1
-1
7
–
S
st
er
eo

–

20/23

Core

View

Application/Qt

Trace

sort

move

filter

jump

zoom

View/Qt

• Example: Timing Diagram Viewer
Schumann et al. (2008)

• Architecture has four layers:

• core, data layer

• abstract view layer

• toolkit-specific view layer/widget

• application using widget

Stereotype “=” layer “=” colour.



Other Examples

–
7
–
2
0
1
5
-1
1
-1
7
–
S
st
er
eo

–

21/23

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.

Necessary: a common idea of what each stereotype stands for.

(To be defined / agreed on by the team, not the job of the UML consortium.)

References

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

22/23



References

–
7
–
2
0
1
5
-1
1
-1
7
–
m
a
in

–

23/23

Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8. Auflage. Oldenbourg, 8. edition.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical
documentation, version 1.0. Technical report, Carl von Ossietzky Universität Oldenburg und
OFFIS.


