— 7 —2015-11-17 — main —

Software Design, Modelling and Analysis in UML

Lecture 7: Class Diagrams I1

2015-11-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 7 —2015-11-17 — Sprelim —

Last Lecture:

o Representing class diagrams as (extended) signatures — for the moment without
associations: later.

This Lecture:

e Educational Objectives: Capabilities for following tasks/questions.

e Could you please map this class diagram to a signature?
o What if things are missing?

Could you please map this signature to a class diagram?

o What is the semantics of ‘abstract’?
e What is visibility good for?

e Content:
e Map class diagram to (extended) signature cont'd.
o Stereotypes — for documentation.

o Visibility as an extension of well-typedness.

Mapping UML CDs to Extended Signatures

I
E
|
2
I
I
Recall
Example Cont d CDZ‘ {(Stereotype,, ..., Stereotype,,))
Package::C
. (SRS + 7 Cop = expr
Dﬂ&-\ak. C s : D, {ordered}
& v Ty = expry {Pry, ..., P, } —wv: Int =27
: w : Float {readOnly}
& ve: Ty = eaprf {Pey, .., Pom,}
$
f; C(n) := (C,{S1,..., Sk} a(n),t(n))
V(n) := {(v1 : Th, &, empr[ll, {Pr1,- Pl }),- s
(ve : Te, o, €xprl {Pess - - Pomy 1)}
atr(n) := {C — {v1,...,v}}
1
i
<8 Dy 2 wcked3 >)
o . R 4
I S
& 9
Dol s Dy, +,Q, Sowdhsed 3>
8‘ © 15,27
I

Is the Mapping a Function?

Question: Is .7 (¢ 27) well-defined?

There are two possible sources for problems:
(1) A class C' may appear in multiple class diagrams:
(i) CD, CDs A (,r/_{g &,

¢ C
v Int w: Int Sviké bt}
me‘VNZS)

v Int v : Bool

Simply forbid the case (ii) — easy syntactical check on diagram.

— 7 —2015-11-17 — Scdmap —

Is the Mapping a Function?

(2) An attribute v may appear in multiple classes with different type:

C D
¢xv . Bool D : Int

Q= (18w, L{f,éc‘,b]’ § v:Bel, vikt]

e Require unique attribute names. ALY "é& ol 7
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

Two approaches:

C:v or D:w
depending on the context. (C::v : Bool and D::v j Int are then unique.)

e Subtle, formalist's approach: observe that B, ¥, g’ 0>

(v:Bool,...) and (v:Int,...) <v"""f:+/€//>

_ o , ki &RV Beol, +,8,0D)
are different things in V. We don't follow that path... D1 § lui il b, S0 5f
6/23

— 7 —2015-11-17 — Scdmap —

Class Diagram Semantics

|
Semantics
The semantics of a set of class diagrams € Z is the induced signature ¥ (¢ 2).
The signature induces a set of system states $%, (given a structure 2).
e Do we need to redefine/extend 97?
Pataad
(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type 7T, i.e. the set Z(T'), would be
determined by the class diagram, and not free for choice.) ,
/ 747’9 éy{,‘_\
d 3= {M«f, .
enum bf
i— %
e @(6‘4*>={Mﬂw,44«;
Heen R
. Llne 7@‘, oz’auah,
|

Semantics

— 7 —2015-11-17 — Scdsem —

The semantics of a set of class diagrams € Z is the induced signature (¢ 2).

The signature induces a set of system states Z?ﬂ (given a structure 2).

e Do we need to redefine/extend 27?

(Would be different if we considered the definition of enumeration types in class
diagrams. Then the domain of an enumeration type T, i.e. the set Z(T'), would be
determined by the class diagram, and not free for choice.)

o What is the effect on E?ﬂ?

For now, we only remove abstract class instances, i.e.

0:9(€)» (V» (2(7)U2(¢.))) a

is now only called system state if and only if, for all (C, S¢,1,t) € €,

l dom(o) N 2(C) :&
With a = 0 as default “abstractness”’, the earlier definitions apply directly.
(We'll revisit this when discussing inheritance.)
What About The Rest?

o Classes:
e Active: not represented in o.

Later: relevant for behaviour, i.e., how system states evolve over time.

e Stereotypes: in a minute.

e Attributes:
o Initial value expression: not represented in o.
Later: provides an initial value as effect of “creation action”.
o Visibility: not represented in o.

Later: viewed as additional typing information for well-formedness of actions; and
with inheritance.

o Properties: such as readOnly, ordered, composite (in the standard.)

e readOnly — later treated similar to visibility.
e ordered — not considered in our UML fragment (— sets vs. sequences).

e composite — cf. lecture on associations.

— 7 —2015-11-17 — Scdsem —

— 7 —2015-11-17 — main

— 7 —2015-11-17 — main

RECALL:

Rhapsody Demo 1

D Mz~ YR oL - Ao T~ KAAE
(megar_fl MNOT: ab 26, xh102 (R2))

Visibility

10/23

11/23

The Intuition by Example

— 7 —2015-11-17 — Svisityp —

y = ({Int}, {C,D}, {’I’L : DQJ,TTL : DO,17
(x: Int, &, expry, 0},
{C— {n},D — {z,m}}

The Intuition by Example

(x: Int, &, expry, D)},

{Cw— {n},Dw— {z,m}}

D
n /It7 T
o & x: Int = expry m
0,1
y
" d:D m 4D
xTr =
D
" x : Int = expr,
C 0.1 £z Int = expry m
0,1
" d:D m 4D
rz=1

Assume w1 : 7¢ and wa @ Tp are logical variables.

Which of the following syntactically correct (?) OCL expressions
should we consider to be well-typed?

& of x: public private protected package
wi.n.x=0 later not
later not

w2.m.x =0

— 7 —2015-11-17 — Svisityp —

12/23

S = ({[nt}, {C,D}, {n : D071,m : D0,17

12/23

. . & = ({Int},{C,D},{n: Do1,m: Do,
The Intuition by Example (x: Int, . capro, D)},

{C— {n},D — {z,m}}

D
C & x: Int = expry

L)
cc} " dPl ™ gD
xTr =

Assume,w; : ¢ and ws : Tp are logical variables.
W1 - To W2 7TD g

Which of the following syntactically correct (?) OCL expressions
should we consider to be well-typed?

£ of x: __ public private protected package
| wi.n.z=0 | é"f later not
N X1 m by cless
g WL, Gor, Tra, ..
: . 2| by des (@, G, -)
E we.m.x =0 @Wf‘ @ red later not
@ X X M|)
7 ? ? V\\L‘“? "g/"‘f
T - . 12/23
Context = ({Int},{C,D},{n: Do1,m: Do,
E— (x: Int, &, expry, 0) },

{C+— {n},D— {z,m}}

o By example: OV\
no [y D
C —x: Int :I m
C 0,1
0,1

self p . x>0 \/

self p.m.x>0
.ZD

self~.n.x>0
L_jﬁ:—-s X

.’LC

1323

— 7 —2015-11-17 — Svisityp —

14/23

Context 7 = ({Int},{C,D},{n: Do1,m: Do,
<$: Intv'fv eﬁprm 0)}7
{C—=A{n}, D= {z,m}}
4
e By example: \
Q
C n y D
C = x:Int :I m
0,1
0,1
Ifp. x>0
selfp .« \/
self p.m.x >0
L_..,_P—g l/
.ZD
selfo.n.xz>0
pelc-n; X
o T
2 e That is, whether an expression involving attributes with visibility is well-typed
~ depends on the class of objects for which it is evaluated.
2 e Visibility is ‘by class’ — ‘by object’.
N 13/23
Attribute Access in Context
Recall: attribute access in OCL Expressions, C, D € €.
v(expry) D To —>'§§ZT ev:Teatr(C), TE T,
ri(expry) : T = TD e r1:Do,1 € atr(C),
ro(expry) : Tc — Set(tp) o r2: Dy € atr(C),
New rules for well-typedness considering visibility:
o v(w) 70— T w:te, v:T€e€atr(C), TeT
o ri(w) C Tc = TD w:Tte, 11:Don € atr(C)
o ro(w) : 7¢ — Set(1p) w:Te, 11: Dy € atr(C)
o v(ezpr,(w)) c 1o =T (v:T,¢ expry, P) € atr(C), T € T,
expry(w) :7¢, w:Tc, and C1 =C, or&=+
G — & e,
J% o r1(expry(w)) : Tc = TD (r1: Do,1, &, expry, P) € atr(C),
2 expri(w) :7¢, w:Tc, and C1 =C, oré=+
_ e malempr,(w)) o — Set(rp) (2 : D&, capr, P) € atr(C),
8‘ expri(w):7¢, w:Tc, and C1 =C, oré=+
T

Example (I) v(w) : Tc—>T w:TC, UZTGGW‘(C),TG?
(i) r1(w) T Tc = TD w:7e, 11 : Doy € atr(C)
(iii) v(ezpri(w)) 70 =T (v:T,¢, expry, P) € atr(C), T € T,
A~
expri(w) : 7¢, w:T¢, and C1 =C, oré =+
(0 (o e (D),
VY e (iv) r(expri(w)) : 7¢ = T (r1 : Do 1, &, expry, P) € atr(C),
expri(w) : 7¢, w:Tc, and C1 =C, oré =+
n D
0,1
o selfp.x>0 ~» X ()50 ok, by ()
3-8
M

o self p.m.x >0~ Y‘(%(%»>D ok, by @,(ﬁ?) w%} ok by (éy

Ty

‘o>
o self .n.xz>0 w»(vn[o#c)\ >0 wt d([y(i";) m(;j[‘.))qt 4
Lo b.Glad () 5~ -

— 7 —2015-11-17 — Svisityp —

olwvw
15/23
The Semantics of Visibility
e Observation:
o Whether an expression does or does not respect visibility
is a matter of well-typedness only.
o We only evaluate (= apply I to) well-typed expressions.
— We need not adjust the interpretation function I to support visibility.
nneed not
Just decide: should we take visibility into account yes / no,
and check well-typedness by the new / old rules.
|
T 16/23

What is Visibility Good For? :
C

o Visibility is a property of attributes —
is it useful to consider it in OCL?

e In other words: given the diagram above,

0,1

—x:Int

:D

@

3

T

is it useful to state the following invariant (even though z is private in D)

context C'inv:n.ax > 07
It depends. (cf. OMG (2006), Sect. 12 and 9.2.2)

e Constraints and pre/post conditions:

o Visibility is taken into account. To state “global” requirements,

it may be adequate to have a “global view”, i.e. be able to “look into” all objects.

e But: visibility supports “narrow interfaces”, “information hiding”, and similar good
design practices. To be more robust against changes, try to state requirements only in

the terms which are visible to a class.

|
% Rule-of-thumb: if attributes are important to state requirements on design models, leave
3 them public or provide get-methods (later).
I
= e Guards and operation bodies:
2 e If in doubt, yes (= do take visibility into account).
L Any so-called action language typically takes visibility into account.
|
Stereotypes
|
|
2
I
|

17/23

1823

Stereotypes as Labels or Tags

& blue »
e What are Stereotypes? Ci

e Not represented in system states.

e Not contributing to typing rules / well-formedness.

e Oestereich (2006):
View stereotypes as (additional) “labelling” (“tags”) or as “grouping”.

e Useful for documentation and model-driven development, e.g. code-generation:

e Documentation: e.g. layers of an architecture.

Sometimes, packages (cf. OMG (2011a,b)) are sufficient and “right”.

e Model Driven Architecture (MDA): later.

|
g
9
A
I
e
I
S
N
I
n 19/23
Example: Stereotypes for Documentation
Application/Qt -
_ ViewiQt
" View "~
F - e o
e Foa 3 .
_.". [o I". \\M"‘ ey >
, .l'.ll T Y : \\ “'\: ,':,,
' ‘,-" & -.t‘\-\._\lu‘m -
7 e e—]] ”
L i Toncalacxre_ s
——— ,/ s .
, IMII|IIHI-H.~_:|—W“__& Fmaiay Lo . T r-ﬁ' o
N + | T e s
— (e’ Th";'hr-' [| [|
[s
3 i
o | ||
Tearkd a-n- e - e -
. . . ¥ ' .
o Example: Timing Diagram Viewer == [L5?..'... ,
g T i ey | —
Schumann et al. (2008) ' ol [|2 L 2
) T S| (o] []
o Architecture has four layers: a9 / L “,\""_
° I - T ;“SH' At
g e core, data layer e] T ! R |, i
i e abstract view layer o] — S
: . » . . A |1 il & Aoewwn - e iaschiniin
Y o toolkit-specific view layer/widget [T et 2
g e application using widget ol M;m{j'
N
L Stereotype “=" layer “=" colour.
|

20/23

Other Examples

— 7 —2015-11-17 — Sstereo —

— 7 —2015-11-17 — main —

o Use stereotypes ‘Team;’, ‘Teams’, ‘Teams’ and assign stereotype Team; to class C if
Team; is responsible for class C.

o Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

Use stereotypes ‘Servers’', ‘Serverp’ to indicate where objects should be stored.

o Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

e etc. etc.

Necessary: a common idea of what each stereotype stands for.

(To be defined / agreed on by the team, not the job of the UML consortium.)

References

21/23

22/23

References

Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8. Auflage. Oldenbourg, 8. edition.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal /2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal /2011-08-06.

Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical
documentation, version 1.0. Technical report, Carl von Ossietzky Universitat Oldenburg und

OFFIS.

— 7 —2015-11-17 — main —

23/23

