— 10 — 2015-12-03 — main —

Software Design, Modelling and Analysis in UML

Lecture 10: State Machines Overview

2015-12-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 10 — 2015-12-03 — Sprelim —

Last Lecture:

e (Mostly) completed discussion of modelling structure.

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
e What's the purpose of a behavioural model?
e What does this State Machine mean? What happens if | inject this event?

e Can you please model the following behaviour.

Content:
e For completeness: Modelling Guidelines for Class Diagrams

e Purposes of Behavioural Models
e UML Core State Machines

Design Guidelines for (Class) Diagram

(partly following Ambler (2005))

— 10 — 2015-12-03 — main —

General Diagramming Guidelines Ambler (2005)

2
(Note: “Exceptions prove the rule.”) L_ —92 / EED
w7 3
o 2.1 Readability @

1.-3. Support Readability of Lines

4. Apply Consistently Sized Symbols e—— DHQ} ; M

e 9. Minimize the Number of Bubbles/ Thaiegs

10. Include White-Space in Diagrams NO: yEs:

< | @_ﬁ

) (e

13. Provide a Notational Legend

— 10 — 2015-12-03 — Selements —

General Diagramming Guidelines Ambler (2005)

— 10 — 2015-12-03 — Selements —

. et
e 2.2 Simplicity okofie j c) closes
e 14. Show Only What You Have to Show _.0;': ':‘f'
. &ty sheo
o 15. Prefer Well-Known Notation over Exotic Notationg7 x» mﬂ,é:
N~)
. ‘/Q"d .
e 16. Large vs. Small Diagrams dgerds o L0 omplp
& & ducliovca erohie

18. Content First, Appearance Second

General Diagramming Guidelines Ambler (2005)

— 10 — 2015-12-03 — Selements —

e 2.2 Simplicity
e 14. Show Only What You Have to Show

15. Prefer Well-Known Notation over Exotic Notation

16. Large vs. Small Diagrams

e 18. Content First, Appearance Second

¢ 2.3 Naming

e 20. Set and (23. Consistently) Follow Effective Naming Conventions

e 2.4 General

e 24. Indicate Unknowns with Question-Marks
e 25. Consider Applying Color to Your Diagram
e 26. Apply Color Sparingly

Class Diagram Guidelines Ambler (2005)

e 5.1 General Guidelines

e 88. Indicate Visibility Only on Design Models (in contrast to analysis models)

e 5.2 Class Style Guidelines

e 96. Prefer Complete Singular Nouns for Class Names
e 97. Name Operations with Strong Verbs

e 99. Do Not Model Scaffolding Code [Except for Exceptions]
N~ AN~
ey ggé/scﬁ webeads

— 10 — 2015-12-03 — Selements —

Class Diagram Guidelines Ambler (2005) "*| ¢ g !‘D {
10 : bt

e 5.2 Class Style Guidelines

103. Never Show Classes with Just Two Compartments

104. Label Uncommon Class Compartments

105.¢Include an Ellipsis (...) at the End of an Incomplete List

107.| List Operations/Attributes in Order of Decreasing Visibility

— 10 — 2015-12-03 — Selements —

Class Diagram Guidelines Ambler (2005)

— 10 — 2015-12-03 — Selements —

ol
¢ 5.3 Relationships No ’E\
[RS E 2
e 112. Model Relationships Horizontally ’
e 115. Model a Dependency When the Relationship is Transitory
3
e 117. Always Indicate the Multiplicity __-C‘ ,,.B £b
(o¢ haie good t&qu[{.‘) 8()5 . a J
e 118. Avoid Multiplicity “x" a-£(b); 7oy 01
* 119. Replace Relationship Lines with Attribute Types |F/8)\
(o have fery Lices)

[

Class Diagram Guidelines Ambler (2005)

(V7R
e 5.4 Associations @:@

e 127. Indicate Role Names When Multiple Associations Between Two Classes
Exist

e 129. Make Associations Bidirectional Only When Collaboration Occurs in Both
Directions
. 4 ép&w{s; oﬁ'h- Lj'—)[j
e 131. Avoid Indicating Non-Navigability s mat Yo be (5T

e 133. Question Multiplicities Involving Minimums and Maximums

e-a. 3.7

e 5.6 Aggregation and Composition
o — exercises j"

— 10 — 2015-12-03 — Selements —

Example: Modelling Games

— 10 — 2015-12-03 — main —

Task: Game Development

10/33

Task: develop a video game.

Degrees of freedom:

Genre: Racing. Rest: open, i.e.

Exemplary choice: 2D-Tron

e simulation vs. arcade

e platform (SDK or not,
open or proprietary,
hardware capabilities...)

e graphics (3D, 2D, ...)

e number of players, Al

e controller

e game experience

— 10 — 2015-12-03 — Stron —

arcade
open

2D

min. 2, Al open

open (later determined by platform)
minimal: main menu and game

1133

Modelling Structure: 2D-Tron

e In many domains, there are canonical
architectures — and adept readers try
to see/find/match this!

e For games:

2D-Tron

arcade

2D

platform open

min. 2, Al open
controller open
only game, no menues

External
inputs

o Keyboard
o Joystick

— 10 - 2015-12-03 — Stron —

Modelling Structure: 2D-Tron |

Main
Game Logic
Output
o player scores ?) P
o interface inputs/engine |] ° irsagn'cs b.(from
to bitmap;
update l I notify ; native or via API)
. N Sound
(Physics) Engine A
L]
o physical objects
o collision notification

Main

External
inputs

12/33

Game Logic ? Output ‘
- ?
update notify
(Physics) Engine

i-‘)al S

s

Joystick? L..x

Control

Keyboard?

Al?

— 10 — 2015-12-03 — Stron —

Tron

\

e

Player
colour
score 1x
direction Gameplay Render
speed
— aalib?
_————update | | notify
| B
head
Segment .
Xogyo Engine Conventions:
' areawidth '
é(l)io{:lr 0. areaheight \ o default pis 1
. world \\ o default ¢ is +
Qua-'/u \

13/33

— 10 — 2015-12-03 — main —

Modelling Behaviour

Stocktaking...

— 10 - 2015-12-03 — Sbehav —

Have: Means to model the structure of the system.

e Class diagrams graphically, concisely describe sets of system states.

o OCL expressions logically state constraints/invariants on system states.

Want: Means to model behaviour of the system.

e Means to describe how system states evolve over time,
that is, to describe sets of sequences

00,01, - €)Iid

of system states.

14/33

15/33

What Can Be Purposes of Behavioural Models?

— 10 - 2015-12-03 — Sbehav —

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

e Require Behaviour. “System definitely does this”

“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

o Allow Behaviour. “System does subset of this”

“After(inserting money and choosing a drin& the drink is dispensed (if in stock).”
(If the implementation insists on taking the money first, that's a fair choice.)

e Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be possible.”
(Otherwise the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

16/33

Constructive Behaviour in UML

— 10 - 2015-12-03 — Sbehav —

UML provides two visual formalisms for W description of behaviours:
e Activity Diagrams
e State-Machine Diagrams

We (exemplary) focus on State-Machines because

e somehow “practice proven” (in different flavours),
e prevalent in embedded systems community,
indicated useful by Dobing and Parsons (2006) survey, and

Activity Diagram’s intuition changed (between UML 1.x and 2.x) from
transition-system-like to petri-net-like...

Example state machines:

[Sy,

¢

\ En#0/z:=xz+1;n!F

/

17/33

Course Map

T

cD,.5M | I Leoct
v :
HJ . %V
(9‘5 V, atr), SM expr

se
|

Ey7A<77—>SM)

7, 58D

<

= (Qsp, 90, As,—sp, Fsp)

00, €0) % (01,€1) - <~ > wr = ((03, cons;, Snd;)) ;e
t/
| G = (N7 E7 f)
S
@ oD
h
i
UML State Machines: Overview
|
E
|
o
T

18/33

19/33

UML State Machines

— 10 — 2015-12-03 — Sstmover —

En#0]/x:=x+1in!F

Brief History:

e Rooted in Moore/Mealy machines, Transition Systems, etc.

Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

e Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);

nowadays also in Matlab/Simulink, etc.

e From UML 1.x on: State Machines

(not the official name, but understood: UML-Statecharts)

e Late 1990's: tool Rhapsody with code-generation for state machines.

Note: there is a common core, but each dialect interprets some constructs subtly

different Crane and Dingel (2007).

Roadmap: Chronologically

— 10 — 2015-12-03 — Sstmover —

(Would be too easy otherwise. . .)
20/33

Syntax:
(i) UML State Machine Diagrams.
(ii) Def.: Signature with signals. .
(iii) Def.: Core state machine. W@E
(iv) Map UML State Machine Diagrams P SM peod ¢p, SD :
to core state machines. . v
= (7.%,V, atr), SM expr 7. SD
Semantics: v !
The Basic Causality Model M= (3, Az, —rsu) v = (@sp:90, Az, 50, Fs0)
(v) Def.: Ether (aka. event pool) I v
. . . (cons.Sndo)
(vi) Def.: System configuration. = (70.20) <, (0 21).-- Wy = (01, consy, Sndy)) e
(vii) Def.: Event. G= B f)
(viii) Def.: Transformer. v
oD
(ix) Def.: Transition system, computation.
(x) Transition relation induced by core state
machine.
(xi) Def.: step, run-to-completion step.
(xii) Later: Hierarchical state machines.

21/33

UML State Machines: Syntax

— 10 — 2015-12-03 — main —

Signature With Signals

Definition. A tuple
S = (T,%6,V,atr, &), & a set of signals,
is called signature (with signals) if and only if
(7,6 U&,V,atr)

is a signature (as before).

Note: Thus conceptually, a signal is a class and can have attributes of plain type,
and participate in associations.

— 10 — 2015-12-03 — Sstmsyn —

22/33

23/33

Signature with Signals: Example

— 10 — 2015-12-03 — Sstmsyn —

*,,L;/Lﬂ

Y%- {(signal)) {\
E ‘ ((signal))
C C” x: Int
(signal)

G (§1t5, fef, frcbe, e,

{C‘Hﬁ/ E'Hﬂ) GH{CS' Thfxssl
iEﬁd)

24/33

Core State Machine

— 10 — 2015-12-03 — Sstmsyn —

Definition.
A core state machine over signature . = (7, %, V, atr, &) is a tuple

M= (Sa 507_>)

where

e S is a non-empty, finite set of (basic) states,

e sg € S is an initial state, dushvaoe
e and %; f shie
— C S x(U{}) X Expry, x Act» xS
trigger guard action

is a labelled transition relation.

We assume a set Ezpr, of boolean expressions over . (for instance
OCL, may be something else) and a set Act s of actions.

25/33

From UML to Core State Machines: By Example

UML state machine diagram SMJ "
wmasles s/ s
.\/ TRt
S1 S9
v 231 /a

annot ::= | (event)|. (event)]* | [[(guard)]] [/ [{action)]]
€9 CF/ sbbwvinks D/E/%

with wk Fhack

e event € &,

e guard € Expr (default: true, assumed to be in Ezpr)
o action € Act.y (default: skip, assumed to be in Act.s)
maps to

M(&«H)‘z({sﬂsag, {S,i/{(su e, 4,4, Sz)i)

— 10 — 2015-12-03 — Sstmsyn —

26/33

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:
annot ::= | (event)|. (event)]* | [[(guard)]] [/ [{action)] |

where event € &, guard € Expr o, action € Acts.

What if things are missing?
s (o) <) e, sy,)

R
E/ W(--:ElW/W"‘)
/ act ~ (., =, toa, ack, .)
E [act ~ (.. € teu, ack,. |

In the standard, the syntax is even more elaborate:
e E(v) — when consuming E in object u,
attribute v of u is assigned the corresponding attribute of E.
e E(v:T)— similar, but v is a local variable, scope is the transition
27/33

— 10 — 2015-12-03 — Sstmsyn —

State-Machines belong to Classes

— 10 — 2015-12-03 — Sstmsyn —

— 10 — 2015-12-03 — main —

In the following, we assume that

e a UML model consists of a set €% of class diagrams and
a set ./ of state chart diagrams (each comprising one state machine SM).

e each state machine SM € %/ is associated with a class Csyq € €(.7).

e For simplicity, we even assume a bijection, i.e. we assume that each class
C € € () has a state machine SM¢ and that its class Csaq, is C.

If not explicitly given, then this one:
28
SMo := ({0}, so, ksrr=trererskiprso]).

We will see later that this choice does no harm semantically.

Intuition 1: SM describes the behaviour of the instances of class C.

Intuition 2: Each instance of class C' executes SMc.

Note: we don't consider multiple state machines per class. We will see later that this case
can be viewed as a single state machine with as many AND-states.

28/33

References

32/33

References

Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models
are created equal. Software and Systems Modeling, 6(4):415-435.

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM,
49(5):109-114.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274.

Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the development
of complex reactive systems. |EEE Transactions on Software Engineering, 16(4):403-414.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal /2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
5 formal /2011-08-06.

33/33

— 10 - 2015-12-03 — main —

