
–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 10: State Machines Overview

2015-12-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
p
re
li
m

–

2/33

Last Lecture:

• (Mostly) completed discussion of modelling structure.

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What’s the purpose of a behavioural model?

• What does this State Machine mean? What happens if I inject this event?

• Can you please model the following behaviour.

• Content:

• For completeness: Modelling Guidelines for Class Diagrams

• Purposes of Behavioural Models

• UML Core State Machines

Design Guidelines for (Class) Diagram

(partly following Ambler (2005))

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

3/33

General Diagramming Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

4/33

(Note: “Exceptions prove the rule.”)

• 2.1 Readability

• 1.–3. Support Readability of Lines

• 4. Apply Consistently Sized Symbols

• 9. Minimize the Number of Bubbles

• 10. Include White-Space in Diagrams

• 13. Provide a Notational Legend

General Diagramming Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

5/33

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second

General Diagramming Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

5/33

• 2.2 Simplicity

• 14. Show Only What You Have to Show

• 15. Prefer Well-Known Notation over Exotic Notation

• 16. Large vs. Small Diagrams

• 18. Content First, Appearance Second

• 2.3 Naming

• 20. Set and (23. Consistently) Follow Effective Naming Conventions

• 2.4 General

• 24. Indicate Unknowns with Question-Marks

• 25. Consider Applying Color to Your Diagram

• 26. Apply Color Sparingly

Class Diagram Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

6/33

• 5.1 General Guidelines

• 88. Indicate Visibility Only on Design Models (in contrast to analysis models)

• 5.2 Class Style Guidelines

• 96. Prefer Complete Singular Nouns for Class Names

• 97. Name Operations with Strong Verbs

• 99. Do Not Model Scaffolding Code [Except for Exceptions]

Class Diagram Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

7/33

• 5.2 Class Style Guidelines

• 103. Never Show Classes with Just Two Compartments

• 104. Label Uncommon Class Compartments

• 105. Include an Ellipsis (...) at the End of an Incomplete List

• 107. List Operations/Attributes in Order of Decreasing Visibility

Class Diagram Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

8/33

• 5.3 Relationships

• 112. Model Relationships Horizontally

• 115. Model a Dependency When the Relationship is Transitory

• 117. Always Indicate the Multiplicity

• 118. Avoid Multiplicity “∗”

• 119. Replace Relationship Lines with Attribute Types

Class Diagram Guidelines Ambler (2005)

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
el
em

en
ts

–

9/33

• 5.4 Associations

• 127. Indicate Role Names When Multiple Associations Between Two Classes
Exist

• 129. Make Associations Bidirectional Only When Collaboration Occurs in Both
Directions

• 131. Avoid Indicating Non-Navigability

• 133. Question Multiplicities Involving Minimums and Maximums

• 5.6 Aggregation and Composition

• → exercises

Example: Modelling Games

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

10/33

Task: Game Development

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
tr
o
n
–

11/33

Task: develop a video game. Genre: Racing. Rest: open, i.e.

Degrees of freedom: Exemplary choice: 2D-Tron

• simulation vs. arcade arcade

• platform (SDK or not,
open or proprietary,
hardware capabilities...)

open

• graphics (3D, 2D, ...) 2D

• number of players, AI min. 2, AI open

• controller open (later determined by platform)

• game experience minimal: main menu and game

Modelling Structure: 2D-Tron

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
tr
o
n
–

12/33

2D-Tron

• arcade
• platform open
• 2D
• min. 2, AI open
• controller open
• only game, no menues

• In many domains, there are canonical
architectures – and adept readers try
to see/find/match this!

• For games:

Main

External
inputs

• Keyboard

• Joystick

• . . .

Game Logic

• player scores
• interface inputs/engine

(Physics) Engine

• physical objects
• collision notification

Output

• Graphics (from
ASCII to bitmap;
native or via API)

• Sound

• . . .

notifyupdate ?

?

Modelling Structure: 2D-Tron

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
tr
o
n
–

13/33

Main

External
inputs

Game Logic

(Physics) Engine

Output

notifyupdate
?

?

Tron

Joystick?

. . .

Keyboard?

Control

Player
colour
score
direction
speed

Gameplay Render

OpenGL?

. . .

aalib?

AI?

Segment
x0, y0
x1, y1
colour

Engine
areawidth
areaheight

1..∗

notifyupdate

0..∗

head

world

1..∗

Conventions:

• default µ is 1

• default ξ is +

Modelling Behaviour

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

14/33

Stocktaking...

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
b
eh

a
v
–

15/33

Have: Means to model the structure of the system.

• Class diagrams graphically, concisely describe sets of system states.

• OCL expressions logically state constraints/invariants on system states.

Want: Means to model behaviour of the system.

• Means to describe how system states evolve over time,
that is, to describe sets of sequences

σ0, σ1, · · · ∈ Σω

of system states.

What Can Be Purposes of Behavioural Models?

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
b
eh

a
v
–

16/33

Example: Pre-Image Image
(the UML model is supposed to be the blue-print for a software system).

A description of behaviour could serve the following purposes:

• Require Behaviour. “System definitely does this”

“This sequence of inserting money and requesting and getting water must be possible.”

(Otherwise the software for the vending machine is completely broken.)

• Allow Behaviour. “System does subset of this”

“After inserting money and choosing a drink, the drink is dispensed (if in stock).”

(If the implementation insists on taking the money first, that’s a fair choice.)

• Forbid Behaviour. “System never does this”

“This sequence of getting both, a water and all money back, must not be possible.”

(Otherwise the software is broken.)

Note: the latter two are trivially satisfied by doing nothing...

Constructive Behaviour in UML

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
b
eh

a
v
–

17/33

UML provides two visual formalisms for constructive description of behaviours:

• Activity Diagrams

• State-Machine Diagrams

We (exemplary) focus on State-Machines because

• somehow “practice proven” (in different flavours),

• prevalent in embedded systems community,

• indicated useful by Dobing and Parsons (2006) survey, and

• Activity Diagram’s intuition changed (between UML 1.x and 2.x) from
transition-system-like to petri-net-like...

• Example state machines:

s1 s2

s3

•
E[n 6= ∅]/x := x+ 1;n !F

/n := ∅F/x := 0

s1 s2

• F/

/p !F

Course Map

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
b
eh

a
v
–

18/33

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ !

✔ !

!
✔

✔

✔

✔

✔

UML State Machines: Overview

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

19/33

UML State Machines

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
o
ve
r
–

20/33

s1 s2

s3

•
E[n 6= ∅]/x := x+ 1;n !F

/n := ∅F/x := 0

Brief History:

• Rooted in Moore/Mealy machines, Transition Systems, etc.

• Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

• Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

• From UML 1.x on: State Machines
(not the official name, but understood: UML-Statecharts)

• Late 1990’s: tool Rhapsody with code-generation for state machines.

Note: there is a common core, but each dialect interprets some constructs subtly
different Crane and Dingel (2007). (Would be too easy otherwise. . .)

Roadmap: Chronologically

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
o
ve
r
–

21/33

Syntax:

(i) UML State Machine Diagrams.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state
machine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S , SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi, Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ !

✔ !

!
✔

✔

✔

✔

✔

UML State Machines: Syntax

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

22/33

Signature With Signals

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
sy
n
–

23/33

Definition. A tuple

S = (T,C, V, atr , E), E a set of signals,

is called signature (with signals) if and only if

(T ,C ∪ E , V, atr)

is a signature (as before).

Note: Thus conceptually, a signal is a class and can have attributes of plain type,
and participate in associations.

Signature with Signals: Example

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
sy
n
–

24/33

C

〈〈signal〉〉

E

〈〈signal〉〉

G

〈〈signal〉〉

F
x : Intc

0..1

Core State Machine

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
sy
n
–

25/33

Definition.
A core state machine over signature S = (T,C, V, atr , E) is a tuple

M = (S, s0,→)

where

• S is a non-empty, finite set of (basic) states,

• s0 ∈ S is an initial state,

• and
→ ⊆ S × (E ∪ { })

︸ ︷︷ ︸

trigger

×ExprS
︸ ︷︷ ︸

guard

×ActS
︸ ︷︷ ︸

action

×S

is a labelled transition relation.

We assume a set ExprS of boolean expressions over S (for instance
OCL, may be something else) and a set ActS of actions.

From UML to Core State Machines: By Example

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
sy
n
–

26/33

UML state machine diagram SM:

s1 s2
annot

annot ::=
[
〈event〉[. 〈event〉]∗

] [
[〈guard〉]

] [
/ [〈action〉]

]

with

• event ∈ E ,

• guard ∈ ExprS (default: true, assumed to be in ExprS)

• action ∈ ActS (default: skip, assumed to be in ActS)

maps to
M(SM) =

(
{s1, s2}
︸ ︷︷ ︸

S

, s1
︸︷︷︸

s0

, (s1, event , guard , action, s2)
︸ ︷︷ ︸

→

)

Abbreviations and Defaults in the Standard

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
sy
n
–

27/33

Reconsider the syntax of transition annotations:

annot ::=
[
〈event〉[. 〈event〉]∗

] [
[〈guard〉]

] [
/ [〈action〉]

]

where event ∈ E , guard ∈ ExprS , action ∈ ActS .

What if things are missing?

 [true] / skip

/ [true] / skip

E / E [true] / skip

/ act [true] / act

E / act E [true] / act

In the standard, the syntax is even more elaborate:

• E(v) — when consuming E in object u,
attribute v of u is assigned the corresponding attribute of E.

• E(v : T) — similar, but v is a local variable, scope is the transition

State-Machines belong to Classes

–
1
0
–
2
0
1
5
-1
2
-0
3
–
S
st
m
sy
n
–

28/33

In the following, we assume that

• a UML model consists of a set CD of class diagrams and
a set SM of state chart diagrams (each comprising one state machine SM).

• each state machine SM ∈ SM is associated with a class CSM ∈ C (S).

• For simplicity, we even assume a bijection, i.e. we assume that each class
C ∈ C (S) has a state machine SMC and that its class CSMC

is C.

If not explicitly given, then this one:

SM0 := ({s0}, s0, (s0, , true, skip, s0)).

We will see later that this choice does no harm semantically.

Intuition 1: SMC describes the behaviour of the instances of class C.

Intuition 2: Each instance of class C executes SMC .

Note: we don’t consider multiple state machines per class. We will see later that this case

can be viewed as a single state machine with as many AND-states.

References

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

32/33

References

–
1
0
–
2
0
1
5
-1
2
-0
3
–
m
a
in

–

33/33

Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models
are created equal. Software and Systems Modeling, 6(4):415–435.

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM,
49(5):109–114.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274.

Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the development
of complex reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

