Software Design, Modelling and Analysis in UML

Lecture 10: State Machines Overview

2015-12-03

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

General Diagramming Guidelines Ambler (2005)

(Note: “Exceptions prove the rule.”) N\.. @
D/ w-
« 2.1 Readability @

« 1-3. Support Readability of Lines "

Yes:
« 4. Apply Consistently Sized Symbols &——— DqlvﬁN DID

9. Minimize the Number of Bubbles/ Thigs

* 10. Include White-Space in Diagrams

Yes:
© 13. Provide a Notational Legend n
=7 o
: A

0

Contents & Goals

Last Lectu

o (Mostly) completed discussion of modelling structure.

This Lecture:

» Educational Objectives: Capabilities for following tasks/questions.
« What's the purpose of a behavioural model?
« What does this State Machine mean? What happens if

 Can you please model the following behaviour.

inject this event?

o Content:
« For completeness: Modelling Guidelines for Class Diagrams
« Purposes of Behavioural Models
« UML Core State Machines

2015-12.03 - Sy

233
General Diagramming Guidelines Ambler (2005)
i ¢
- 22 St 2, (2
« 14. Show Only What You Have to Show Rl
o
+ 15. Prefer Well-Known Notation over Exotic Notation ¢ o bl
ROt TR A
« 16. Large vs. Small Diagrams &N\mhr .Mm“ 0" ppudip
18. Content First, Appearance Second
.
g 2| O
& t -5 [}
7 5738

Design Guidelines for (Class) Diagram

(partly following Ambler (2005))

General Diagramming Guidelines Ambler (2005)

° 2.2 Sim)

ity

* 14. Show Only What You Have to Show

o 15. Prefer Well-Known Notation over Exotic Notation
» 16. Large vs. Small Diagrams

« 18. Content First, Appearance Second

* 2.3 Naming

© 20. Set and (23. Consistently) Follow Effective Naming Conventions

* 2.4 General

« 24. Indicate Unknowns with Question-Marks
« 25. Consider Applying Color to Your Diagram
= 26. Apply Color Sparingly

Class Diagram Guidelines Ambler (2005) Class Diagram Guidelines Ambler (2005)

Class Diagram Guidelines Ambler (2005) | ¢ D
0wt

* 5.1 General Guidelines

« 8. Indicate Visibility Only on Design Models (in contrast to analysis models)

Mo
5.4 Associations BIIK Df

» 127. Indicate Role Names When Multiple Associations Between Two Classes
it

» 129. Make Associations Bidirectional Only When Collaboration Occurs in Both

Directions

© 5.2 Class Style Guidelines

© 103. Never Show Classes with Just Two Compartments

Example: Modelling Games

© 5.3 Relationships

:o_D/ «ED&
(=R M 2

© 112. Model Relationships Horizontal

o 115. Model a Dependency When the Relationship is Transitory
3 i 104. Label U Class C tment: b)
o 5.2 Class Style Guidelines . abel Uncommon Class Compartments o 117, Always _;Esﬁma " “@ ity V .B'a@\?
! P ;
+ 96. Prefer Complete Singular Nouns for Class Names * 1054 Include an Ellpsis (...) at the End of an Incomplete List o 115, Aveid Musesis B les aww?w @7
. 97. N 0 t th St Verb: © 107.|List Operations/Attributes in Order of Decreasing Visibility . . o ==\~
. Name Operations with Strong Verbs S « 119. Replace Relationship Lines with Attribute Types @
« 99. Do Not Model Scaffolding Code [Except for Exceptions] e (o Vv ey Lines)
- g/t wolods Faowe]| "
£y gt oo [cF—
; 7 V-
H c
5 - 4U~
6/33 7/ B
Class Diagram Guidelines Ambler (2005) Task: Game Development

Task: develop a video game. ~ Genre: Racing. Rest: open,
Degrees of freedom: Exemplary choice: 2D-Tron
« simulation vs. arcade arcade
« platform (SDK or not, open
open or proprietary,
hardware capabilities...)

A) i dipendds; offe Ulﬂ;
« 131. Avoid Indicating Non-Navigability is makt o be (CHSQ o graphics (3D, 2D, ...) 2D
« 133. Question Multiplicities Involving Minimums and Maximums © number of players, Al min. 2, Al open
« controller open (later determined by platform)

ey 3.0
* 5.6 Aggregation and Composition
) I—
o — exercises T&

« game experience minimal: main menu and game

Modelling Structure: 2D-Tron 2D-Tron
« arcade _Lw
» platform open 7
o In many domains, there are canonical * 2D) Al
architectures — and adept readers try oomn open
to see/find/match this! o only game, no menues

* For games:

Main]

/

Game Logic

External Output

« player scores

inputs o interface inputs/engine * Graphics (from
« Keyboard ASCII tobitmap;
« Joystick Eimnl a notify native or via API)
. Sound
. (Physics) Engine

« physical objects
« collsion notification

Stocktaking...

Have: Means to model the structure of the system.

o Class diagrams graphically, concisely describe sets of system states.

= OCL expressions logically state constraints/invariants on system states.

Want: Means to model behaviour of the system.
* Means to describe how system states evolve over time,
that is, to describe sets of sequences

09,01, € XY

of system states.

Modelling Structure: 2D-Tron

Logic ! G

Player
colour

score L+
direction Gameplay

Control

Keyboard?

Engine
areawidth
areaheight

Conventions:

o default juis 1

o default & is +

eugin
13
What Can Be Purposes of Behavioural Models?

Example: Pre-Image Image

(the UML model is supposed to be the blue-print for a software system)

A description of behaviour could serve the following purposes:

« Require Behaviour. “System definitely does this”
“This sequence of inserting money and requesting and getting water must be possible.”
(Otherwise the software for the vending machine is completely broken.)

« Allow Behaviour. “System does subset of this”
“After(inserting money and choosing a drink) the drink is dispensed (if in stock).”

(If the implementation insists on taking the money first, that's a fair choice.)
« Forbid Behaviour. “System never does this”

2 “This sequence of getting both, a water and all money back, must not be possible.”

(Otherwise the software is broken.)

2 Note: the latter two are trivially satisfied by doing nothing...

16/33

Modelling Behaviour

Constructive Behaviour in UML

UML provides two visual formalisms for constructive description of beha

RS

Activity Diagrams
State-Machine

iagrams

We (exemplary) focus on State-Machines because

somehow “practice proven” (in different flavours),

prevalent in embedded systems community,

(

Activity Diagram’s intuition changed (between UML 1.x and 2.x) from
transition-system-like to petri-net-like.

and Parsol

indicated useful by Dob 6) survey, and

Example state machines:

Sbehav

20151203

Course Map

=0
* M
b
CD, SM 1 p e 0oCL CD, SD
v ! |
Yoloooly: v 7
= (Z,%.V,atr), SM expr 7, SD
N U Asenelis N
v S err
v B = (Qsp.a0, Az, —sp. Fsp)

2

N

LeomnSdo), (g1 1)+ ety = (03, consi, Sndi))en

1833

Roadmap: Chronologically

Syntax:
UML State Machine Diagrams.
Def.: Signature with signals.

Def.: Core state machine.

Map UML State Machine Diagrams
to core state machines.

Seman
The Basic Causality Model
Def.: Ether (aka. event pool)

Def.: System configuration
Def.: Event.

Def.: Transformer.

Def.: Transition system, computation

Transition relation induced by core state
machine.

Def.: step, run-to-completion step.

Later: Hierarchical state machines.

2133

UML State Machines: Overview

UML State Machines: Syntax

1933

2233

5-12-03 - Sstmove

10 - 2015-12:03 - Sstmsyn

UML State Machines

En#0)/z:=x+1Ln!F

Brief History:

« Rooted in Moore/Mealy machines, Tra

on Systems, etc.

© Harel (1987): Statecharts as a concise notation,
introduces in particular hierarchical states.

Manifest in tool Statemate Harel et al. (1990) (simulation, code-generation);
nowadays also in Matlab/Simulink, etc.

wre
= From UML 1x on: State Machines A
(not the offi name, but understood: UML-Statecharts)

« Late 1990's: tool Rhapsody with code-generation for state machines, @

g

Note: there is a common core, but each dialect jntgrprets some constructs subtly
different Crane and Dingel (2007). :vae& be too easy otherwise. ...)

20733

Signature With Signals

Definition. A tuple
S =(F,6 V,atr,8), & a set of signals,
is called signature (with signals) if and only if

(7,6 U&,V,atr)

is a signature (as before).

2333

Signature with Signals: Example

(signal))
P
x: Int

(signal)
G

$=($], e, fule, e,

$Chp, En0, ¢ bief, Fisd3,

wmh&v

20151203

= 2433

Abbreviations and Defaults in the Standard

Reconsider the syntax of transition annotations:
annot ::= [(event)[. (event)]”] [[{(guard)]] [/ [{action)]]
where event € &, guard € Expr,, action € Act .

What if things are missing?

/ — —_—
E/ o () E, pa, hp, -)
[act (., -, toa, act,.)
E [act ~ (. E te, ack, .|

In the standard, the syntax is even more elaborate:

= o E(v) — when consuming E in object u,

attribute v of u is assigned the corresponding attribute of E.

7 e E(v:T)— similar, but v is a local variable, scope is the transition

b 275

Core State Machine

A core state machine over signature . = (7, %, V, atr, &) is a tuple
M = (S, 50,—)

where
* S'is a non-empty, finite set of (basic) states,

2%, oot
i (E0{}) x B Act mx
— CSx (6 -}) x Ezpr o x Act.y x
< Pry .
trigger guard action

is a labelled transition relation.

We assume a set Ezpr of boolean expressions over .# (for instance
OCL, may be something else) and a set Act s of actions.

n
N

State-Machines belong to Classes

In the following, we assume that

* a UML model consists of a set ¢'Z of class diagrams and
a set %4/ of state chart diagrams (each comprising one state machine SM).

o each state machine SM € .%# is associated with a class Csy € 6(.).

. we assume that each class

o For simplicity, we even assume a bijection,
C € %(.7) has a state machine SM: and that its class Cisaq,, is O

If not explicitly given, then this one:

SMo = ({s0}. s0,

see later that this choice does no harm semantically.

= Intuition 1: SMc describes the behaviour of the instances of class C'.
ion 2: Each instance of class C' executes SM:.

Intu

Note: we don’t consider multiple state machines per class. We will see later that this case
can be viewed as a single state machine with as many AND-states.

2015.

28/33

~10-

From UML to Core State Machines: By Example

UML state machine diagram SM:
FRTOVARe: 3

annot s:= [(event)] . (event)]* | [[(guard)]] [/ [(action)]]

4 ST ks EKE
oge ogn

with
e event €
o guard € Eapr, (default: true, assumed to be in Expr,)
o action € Act (default: skip, assumed to be in Act.)
maps to

z?&um?_mmw\ {3 8(s0 00,54, QC

51203 - Sstmsyn -

26/33

References

5.12.03 - ma

3233

References

Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models
are created equal. Software and Systems Modeling, 6(4):415-435.

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM,
49(5):109-114.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231-274.

Harel, D., Lachover, H., et al. (1990) A working envi for the
of complex reactive systems. IEEE Transactions on Software Engineering, 16(4):403-414.
OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal /2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report

m formal /2011-08-06.

2015-12:03

3333

10

