Software Design, Modelling and Analysis in UML

 Lecture 13: Core State Machines III2015-12-17
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- System configuration cont'd
- Action language and transformer

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What does this State Machine mean? What happens if I inject this event?
- Can you please model the following behaviour.
- What is: Signal, Event, Ether, Transformer, Step, RTC.
- Content:
- Step, Run-to-Completion Step

Transition Relation

Transition Relation, Computation

Definition. Let A be a set of labels and S a (not necessarily finite) set of of states. We call

$$
\rightarrow \subseteq S \times A \times S
$$

a (labelled) transition relation.
Let $S_{0} \subseteq S$ be a set of initial states. A (finite or infinite) sequence

$$
\underbrace{s_{0} \xrightarrow{a_{0}} s_{1} \xrightarrow{\epsilon \rightarrow} s_{2} \xrightarrow{a_{1}} \ldots}_{\text {talled computation }}
$$

with $s_{i} \in S, a_{i} \in A$ is called computation
of the labelled transition system $\left(S, A, \rightarrow, S_{0}\right)$ if and only if

- initiation: $s_{0} \in S_{0}$
- consecution: $\left(s_{i}, a_{i}, s_{i+1}\right) \in \rightarrow$ for $i \in \mathbb{N}_{0}$

Active vs. Passive Classes/Objects

- Note: From now on, for simplicity, assume that all classes are active.

We'll later briefly discuss the Rhapsody framework which proposes a way how to integrate non-active objects.

- Note: The following RTC "algorithm" follows Harel and Ger (1997) (ie. the one realised by the Rhapsody code generation) if the standard is ambiguous or leaves choices.

From Core State Machines to LTS

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a t r_{0}, \mathscr{E}\right)$ be a signature with signals (all classes in \mathscr{C}_{0} active), \mathscr{D}_{0} a structure of \mathscr{S}_{0}, and (Eth, ready, $\left.\oplus, \ominus,[\cdot]\right)$ an ether over \mathscr{S}_{0} and \mathscr{D}_{0}. Assume there is one core state machine M_{C} per class $C \in \mathscr{C}$.
We say, the state machines induce the following labelled transition ration on states $S:=\left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times\right.$ Eth $) \dot{\cup}\{\#\}$ with labels $\left.A:=2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \cup}\{*,+\}\right) \times \mathscr{D}(\mathscr{C}) \times \mathscr{D}(\mathscr{C}):$

- $(\sigma, \varepsilon) \xrightarrow{(\text { cons,Snd })}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$

(i) an event with destination u is discarded,
(ii) an event is dispatched to u, i.e. stable object processes an event, or
(iii) run-to-completion processing by u continues,
ie. object u is not stable and continues to process an event,
(iv) the environment interacts with object u,
- $s \xrightarrow[u]{(\text { cons, },)} \#$
if and only if
(v) an error condition occurs during consumption of cons, or ($s=\#$ and) cons $=\emptyset$.
(i) Discarding An Event

$$
(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

and
coalitions on ($\sigma^{\prime} . \varepsilon^{\prime}$)
(i) Discarding An Event
if
$\left.\begin{array}{r}(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, \text { Sid })} \\ \vdots \\ \ldots\end{array} \sigma^{\prime}, \varepsilon^{\prime}\right)$

- an E-event (instance of signal E) is ready in ε for object ${ }^{\prime} u$ of a class \mathscr{C}, ie. if

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(E): u_{E} \in \operatorname{ready}(\varepsilon, u)
$$

- u is stable and in state machine state s, i.e. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- but there is no corresponding transition enabled (all transitions incident with current state of u either have other triggers or the guard is not satisfied)

$$
\forall\left(s, F, \operatorname{expr}, \text { act }, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F \neq E \vee I \llbracket \operatorname{expr} \rrbracket \rrbracket(\sigma, u)=0
$$

and
update value of b of object u to b

- in the system configuration, stability may change, u_{E} goes away, ie.

$$
\sigma^{\prime}=\overparen{\sigma[u . s t a b l e \mapsto b]} \backslash\left\{u_{E} \mapsto \sigma\left(u_{E}\right)\right\}
$$

where $b=0$ if and only if there is a transition with trigger ' $_$' enabled for u in $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$.

- the event u_{E} is removed from the ether, ie.

$$
\varepsilon^{\prime}=\varepsilon \ominus u_{E}
$$

- consumption of u_{E} is observed, ie.

$$
\text { cons }=\left\{u_{E}\right\}, \quad \text { Snd }=\emptyset .
$$

(ii) Dispatch

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \exists u_{E} \in \mathscr{D}(E): u_{E} \in \operatorname{ready}(\varepsilon, u)$
- u is stable and in state machine state s, i.e. $\sigma(u)($ stable $)=1$ and $\sigma(u)(s t)=s$,
- a transition is enabled, i.e.

$$
\exists\left(s, F, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): F=E \wedge I \llbracket \operatorname{expr} \rrbracket(\tilde{\sigma}, u)=1
$$

where $\tilde{\sigma}=\sigma\left[\right.$ u.params $\left._{E} \mapsto u_{E}\right]$.
and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{a c t}$ to (σ, ε) and removing u_{E} from the ether, i.e.

$$
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{a c t}[u]\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)
$$

renore U_{E}

$\overbrace{\mid \mathscr{D}(\mathscr{C}) \backslash\left\{u_{E}\right\}}$
where b depends (see (i))

- Consumption of u_{E} and the side effects of the action are observed, i.e.

$$
\text { cons }=\left\{u_{E}\right\}, \quad S n d=O b s_{t_{a c t}}[u]\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)
$$

$\varepsilon^{\prime}:$
curly


```
- u J 
    u
- \exists(s,F, expr, act,\mp@subsup{s}{}{\prime})\in->(\mathcal{SM}
    F=E\wedgeI\llbracketexpr\rrbracket(\tilde{\sigma},u)=1\
- \tilde{\sigma}=\sigma[u.params}\mp@subsup{E}{}{\mapsto}\mapsto\mp@subsup{u}{E}{}]
```

- $\sigma(u)($ stable $)=$ 人,$\sigma(u)(s t)=s^{\boldsymbol{\jmath}}$,
- $\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right)=t_{a c t}\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)^{\Omega}$
- $\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right)=t_{\text {act }}\left(\sigma, \varepsilon \ominus u_{E}\right)$
- $\sigma^{\prime}=\left.\left(\sigma^{\prime \prime}\left[\right.\right.$ u.st $\mapsto s^{\prime}$, u.stable \mapsto b, u.params $\left.\left.{ }_{E} \mapsto \emptyset\right]\right)\right|_{\mathscr{D}(\mathscr{C})} \backslash\left\{u_{E}\right\}$
- cons $=\left\{u_{E}\right\}, \quad S n d=O b s_{t_{\text {act }}}[u]\left(\tilde{\sigma}, \varepsilon \ominus u_{E}\right)$

(iii) Continue Run-to-Completion

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if

- there is an unstable object u of a class \mathscr{C}, i.e.

$$
u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \sigma(u)(\text { stable })=0
$$

- there is a transition without trigger enabled from the current state $s=\sigma(u)(s t)$, i.e.

$$
\exists\left(s, \stackrel{\downarrow}{-}, \operatorname{expr}, a c t, s^{\prime}\right) \in \rightarrow\left(\mathcal{S} \mathcal{M}_{C}\right): I \llbracket \operatorname{expr} \rrbracket(\underset{\mathbf{R}}{(\sigma, u)}=1
$$

and

- $\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ results from applying $t_{\text {act }}$ to (σ, ε), i.e.

$$
\left(\sigma^{\prime \prime}, \varepsilon^{\prime}\right) \in t_{a c t}[u](\sigma, \varepsilon), \quad \sigma^{\prime}=\sigma^{\prime \prime}\left[\text { u.st } \mapsto s^{\prime}, \text { u.stable } \mapsto b\right]
$$

where b depends as before.

- Only the side effects of the action are observed, i.e.

$$
\text { cons }=\emptyset, \quad S n d=O b s_{t_{a c t}}[u](\sigma, \varepsilon)
$$

(iv) Environment Interaction

Assume that a set $\mathscr{E}_{e n v} \subseteq \mathscr{E}$ is designated as environment events and a set of attributes $V_{e n v} \subseteq V$ is designated as input attributes.

Then

$$
(\sigma, \varepsilon) \xrightarrow[e n v]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

if either (!)

- an environment event $E \in \mathscr{E}_{\text {env }}$ is spontaneously sent to an alive object $u \in \operatorname{dom}(\sigma)$, i.e.

$$
\sigma^{\prime}=\sigma \dot{\cup}\left\{u_{E} \mapsto\left\{v_{i} \mapsto d_{i} \mid 1 \leq i \leq n\right\}, \quad \varepsilon^{\prime}=\varepsilon \oplus\left(u, u_{E}\right)\right.
$$

where $u_{E} \notin \operatorname{dom}(\sigma)$ and $\operatorname{atr}(E)=\left\{v_{1}, \ldots, v_{n}\right\}$.

- Sending of the event is observed, i.e. cons $\left.=\emptyset, \operatorname{Snd}=\left\{u_{E},\right)\right\}$.
or
- Values of input attributes change freely in alive objects, i.e.

$$
\forall v \in V \forall u \in \operatorname{dom}(\sigma): \sigma^{\prime}(u)(v) \neq \sigma(u)(v) \Longrightarrow v \in V_{e n v}
$$

and no objects appear or disappear, i.e. $\operatorname{dom}\left(\sigma^{\prime}\right)=\operatorname{dom}(\sigma)$.

- $\varepsilon^{\prime}=\varepsilon$.

(v) Error Conditions

$$
s \xrightarrow[u]{(\text { cons }, S n d)} \#
$$

if, in (i), (ii), or (iii),

- $I \llbracket \operatorname{expr} \rrbracket$ is not defined for σ and u, or
- $t_{a c t}[u]$ is not defined for (σ, ε),
and
- cons $=\emptyset$, and $S n d=\emptyset$.
-

- $s_{1} \xrightarrow{E[\text { expr }] / x:=x / 0} s_{2}$

Example Revisited

	$1_{C}: C$				$5_{D}: D$			ε	rule
Nr.	x	n	st	stable	p	st	stable		
0	27	5_{D}	s_{1}	1	1_{C}	s_{1}	1	$\left(3_{F}, 1_{C}\right) \cdot\left(2_{E}, 1_{C}\right)$	6
1	22	5	s_{1}	1	2	s_{1}	1		(ker (i)
2	28	52	s_{2}	0	$1 c$	s_{1}	1	$(97,50)$	(ii)
32	28	$\stackrel{\beta}{ }$	S_{3}	1	1 c	s_{1}	7	(975, 5_{5})	(iii)
35	28	53	v_{2}	0	${ }_{1 c}$	s_{2}	0	-	(ii)
467									
462									

References

References

Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

