Software Design, Modelling and Analysis in UML

 Lecture 14: Core State Machines IV2016-01-12
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Transitions by Rule (i) to (v).

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What is a step / run-to-completion step?
- What is divergence in the context of UML models?
- How to define what happens at "system / model startup"?
- What are roles of OCL contraints in behavioural models?
- Is this UML model consistent with that OCL constraint?
- What do the actions create / destroy do? What are the options and our choices (why)?

- Content:

- Step / RTC-Step revisited, Divergence
- Initial states
- Missing pieces: create / destroy transformer
- A closer look onto code generation
- Maybe: hierarchical state machines

Step and Run-to-Completion

Notions of Steps: The Step
Note: we call one evolution

$$
(\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)
$$

a step. $\underbrace{\text { in care of huler }(i i)+(i i i)}$
Thus in our setting, a step directly corresponds to
one object (namely u) taking a single transition between regular states.
(We will extend the concept of "single transition" for hierarchical state machines.)
That is: We're going for an interleaving semantics without true parallelism.

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

- Intuition: a maximal sequence of steps of one object, where the first step is a dispatch step, all later steps are continue steps, and the last step establishes stability (or object disappears).
Note: while one step corresponds to one transition in the state machine, a run-to-completion step is in general not syntacically definable: one transition may be taken multiple times during an RTC-step.

Example:

Notions of Steps: The Run-to-Completion Step Cont'd

Proposal: Let

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{\left(\operatorname{cons}_{0}, S n d_{0}\right)} \ldots \frac{\left(\operatorname{cons}_{n-1}, S n d_{n-1}\right)}{u_{n-1}}\left(\sigma_{n}, \varepsilon_{n}\right), \quad n>0
$$

be a finite (!), non-empty, maximal, consecutive sequence such that

- (cons $_{0}, S n d_{0}$) indicates dispatching to $u:=u_{0}$ (by Rule (ii) or (i)) i.e. cons $=\left\{u_{E}\right\}, u_{E} \in \operatorname{dom}\left(\sigma_{0}\right) \cap \mathscr{D}(\mathscr{E})$,
- if u becomes stable or disappears, then in the last step, i.e.

$$
\forall i>0 \bullet\left(\sigma_{i}(u)(\text { stable })=1 \vee u \notin \operatorname{dom}\left(\sigma_{i}\right)\right) \Longrightarrow i=n
$$

Let $0=k_{1}<k_{2}<\cdots<k_{N}<n$ be the maximal sequence of indices such that $u_{k_{i}}=u$ for $1 \leq i \leq N$. Then we call the sequence

$$
\left(\sigma_{0}(u)=\right) \quad \sigma_{k_{1}}(u), \sigma_{k_{2}}(u) \ldots, \sigma_{k_{N}}(u), \sigma_{n}(u)
$$

a (!) run-to-completion step of u (from (local) configuration $\sigma_{0}(u)$ to $\sigma_{n}(u)$).

Divergence

We say, object u can diverge on reception cons $_{0}$ from (local) configuration $\sigma_{0}(u)$ if and only if there is an infinite, consecutive sequence

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{\left(\text { cons }_{1}, S n d_{1}\right)} u_{1} \ldots
$$

where $u_{i}=u$ for infinitely many $i \in \mathbb{N}_{0}$ and $\sigma_{i}(u)($ stable $)=0, i>0$,
i.e. u does not become stable again.

Run-to-Completion Step: Discussion.

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object
we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be: the behaviour of a set of objects is determined by the behaviour of each object "in isolation".
Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

(Proof left as exercise...)

- (A): Refer to private features only via "self".
(Recall that other objects of the same class can modify private attributes.)
- (B): Let objects only communicate by events, i.e. don't let them modify each other's local state via links at all.

Putting It All Together

Initial States

Recall: a labelled transition system is $\left(S, A, \rightarrow, S_{0}\right)$. We have

- S : system configurations (σ, ε)
\rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons,Snd })}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$.
Wanted: initial states S_{0}.
Proposal:
Require a (finite) set of object diagrams $\mathcal{O D}$ as part of a UML model

$$
(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D}) .
$$

And set

$$
S_{0}=\left\{(\sigma, \varepsilon) \mid \sigma \in G^{-1}(\mathcal{O D}), \quad \mathcal{O D} \in \mathscr{O D}, \quad \varepsilon \text { empty }\right\} .
$$

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).
We can read that as an abbreviation for an object diagram.

The semantics of the UML model

$$
\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})
$$

where

- some classes in $\mathscr{C} \mathscr{D}$ are stereotyped as 'signal' (standard), some signals and attributes are stereotyped as 'external' (non-standard),
- there is a 1-to-1 relation between classes and state machines,
- $\mathscr{O D}$ is a set of object diagrams over $\mathscr{C D}$,
is the transition system $\left(S, A, \rightarrow, S_{0}\right)$ constructed on the previous slides).

The computations of \mathcal{M} are the computations of $\left(S, A, \rightarrow, S_{0}\right)$.

OCL Constraints and Behaviour

- Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model.
- We call \mathcal{M} consistent ff, for each OCL constraint expr $\in \operatorname{Inv}(\mathscr{C} \mathscr{D}) \cup \operatorname{lnv}(\mathscr{C} \boldsymbol{C})$

$$
\sigma \models \operatorname{expr} \text { for each "reasonable point" }(\sigma, \varepsilon) \text { of computations of } \mathcal{M} \text {. }
$$

(Cf. exercises and tutorial for discussion of "reasonable point".)

Note: we could define $\operatorname{Inv}(\mathscr{S} \mathscr{M})$ similar to $\operatorname{Inv}(\mathscr{C D})$.

OCL Constraints and Behaviour

- Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model.
- We call \mathcal{M} consistent iff, for each OCL constraint expr $\in \operatorname{Inv}(\mathscr{C} \mathscr{D})$,

$$
\sigma \models \operatorname{expr} \text { for each "reasonable point" }(\sigma, \varepsilon) \text { of computations of } \mathcal{M} \text {. }
$$

(Cf. exercises and tutorial for discussion of "reasonable point".)

Note: we could define $\operatorname{Inv}(\mathscr{S} \mathscr{M})$ similar to $\operatorname{Inv}(\mathscr{C} \mathscr{D})$.

Pragmatics:

- In UML-as-blueprint mode, if $\mathscr{S} \mathscr{M}$ doesn't exist yet, then $\mathcal{M}=(\mathscr{C} \mathscr{D}, \emptyset, \mathscr{O} \mathscr{D})$ is typically asking the developer to provide $\mathscr{S} \mathscr{M}$ such that $\mathcal{M}^{\prime}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ is consistent.

If the developer makes a mistake, then \mathcal{M}^{\prime} is inconsistent.

> (and not completely un comuon)

- Not common: if $\mathscr{S} \mathscr{M}$ is given, then constraints are also considered when choosing transitions in the RTC-algorithm. In other words: even in presence of mistakes, the $\mathscr{S} \mathscr{M}$ never move to inconsistent configurations.

Last Missing Piece: Create and Destroy Transformer

Transformer: Create

abstract syntax create $(C$, expr, $v)$	concrete syntax $\exp \cdot \mathrm{V}!=\operatorname{new}^{C} C$
intuitive semantics	
Create an object of class C and assign it to attribute v of the object denoted by expression expr.	
$\operatorname{atr}(C)=\left\{\left\langle v_{1}: T_{1}, \operatorname{expr}_{i}^{0}\right\rangle \mid 1 \leq i \leq n\right\}$	
semantics	
observables	
(error) conditions	
$I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)$ not defined.	
istead	
$x:=$ (new $\left.C^{\prime}\right) \cdot y+($ new $D) \cdot z_{\text {; }}$	
write	
$\operatorname{tamp}_{1}:=$ new d_{j}	
tempe: $=$ wow D_{i}^{\prime} $x: c$ tene $\cdot y+\operatorname{ten} p_{2} . z$	

Transformer: Create

```
abstract syntax concrete syntax
    create \((C, \operatorname{expr}, v)\)
intuitive semantics
Create an object of class \(C\) and assign it to attribute \(v\) of the
                object denoted by expression expr.
well-typedness
            \(\operatorname{expr}: T_{D}, v \in \operatorname{atr}(D)\),
    \(\operatorname{atr}(C)=\left\{\left\langle v_{1}: T_{1}, \operatorname{expr}_{i}^{0}\right\rangle \mid 1 \leq i \leq n\right\}\)
semantics
observables
(error) conditions
    \(I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)\) not defined.
```

- We use an "and assign"-action for simplicity - it doesn't add or remove expressive power, but moving creation to the expression language raises all kinds of other problems since then expressions would need to modify the system state.
- Also for simplicity: no parameters to construction (\sim parameters of constructor). Adding them is straightforward (but somewhat tedious).

How To Choose New Identities?

- Re-use: choose any identity that is not alive now, i.e. not in $\operatorname{dom}(\sigma)$.
- Doesn't depend on history.
- May "undangle" dangling references - may happen on some platforms.
- Fresh: choose any identity that has not been alive ever, i.e. not in $\operatorname{dom}(\sigma)$ and any predecessor in current run.
- Depends on history.
- Dangling references remain dangling - could mask "dirty" effects of platform.

Transformer: Create

Create Transformer Example

$\mathcal{S M D}$:

Transformer: Destroy

What to Do With the Remaining Objects?

Assume object u_{0} is destroyed. .

- object u_{1} may still refer to it via association r :
- allow dangling references?
- or remove u_{0} from $\sigma\left(u_{1}\right)(r)$?
- object u_{0} may have been the last one linking to object u_{2} :
- leave u_{2} alone?
- or remove u_{2} also? (garbage collection)
- Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with "expect the worst", because there are target platforms which don't provide garbage collection - and models shall (in general) be correct without assumptions on target platform.

But: the more "dirty" effects we see in the model, the more expensive it often is to analyse. Valid proposal for simple analysis: monotone frame semantics, no destruction at all.
abstract syntax
concrete syntax
destroy (expr)
intuitive semantics Destroy the object denoted by expression expr.
well-typedness

$$
\operatorname{expr}: T_{C}, C \in \mathscr{C}
$$

semantics fiunction restriction
$t_{\text {destroy }(\exp f)}\left[u_{x}\right](\sigma, \varepsilon)=\left\{\left(\sigma^{\prime}, \varepsilon^{\prime}\right)\right\}, \quad \varepsilon^{\prime}=[u](\varepsilon)$
where $\sigma^{\prime}=\left.\sigma\right|_{\operatorname{dom}(\sigma) \backslash\{u\}}$ with $u=I \llbracket \operatorname{expr} \rrbracket\left(\sigma, u_{x}\right)$.
observables
$O b s_{\text {destroy }(\text { expr })}\left[u_{x}\right]=\{(+, u)\}$
(error) conditions
$I \llbracket \operatorname{expr} \rrbracket\left(\sigma, u_{x}\right)$ not defined.

UML distinguishes the following kinds of states:

	example
pseudo-state initial (shallow) history deep history fork/join	
junction, choice entry point exit point terminate submachine state	$S: s$

References

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

