
–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 14: Core State Machines IV

2016-01-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
p
re
li
m

–

2/55

Last Lecture:

• Transitions by Rule (i) to (v).

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a step / run-to-completion step?

• What is divergence in the context of UML models?

• How to define what happens at “system / model startup”?

• What are roles of OCL contraints in behavioural models?

• Is this UML model consistent with that OCL constraint?

• What do the actions create / destroy do? What are the options and our choices (why)?

• Content:

• Step / RTC-Step revisited, Divergence

• Initial states

• Missing pieces: create / destroy transformer

• A closer look onto code generation

• Maybe: hierarchical state machines



Step and Run-to-Completion

–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

3/55

Notions of Steps: The Step

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
st
m
st
ep

–

4/55

Note: we call one evolution

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

a step.

Thus in our setting, a step directly corresponds to

one object (namely u) taking a single transition between regular states.

(We will extend the concept of “single transition” for hierarchical state machines.)

That is: We’re going for an interleaving semantics without true parallelism.



Notions of Steps: The Run-to-Completion Step

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
st
m
st
ep

–

5/55

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps of one object,
where the first step is a dispatch step, all later steps are continue steps,
and the last step establishes stability (or object disappears).

Note: while one step corresponds to one transition in the state machine,
a run-to-completion step is in general not syntacically definable:

one transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/
[x > 0]/x := x− 1

[x = 0]

σ:
: C

x = 2

ε:

E for u

Notions of Steps: The Run-to-Completion Step Cont’d

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
st
m
st
ep

–

6/55

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• (cons0, Snd0) indicates dispatching to u := u0 (by Rule (ii)),
i.e. cons = {uE}, uE ∈ dom(σ0) ∩ D(E ),

• if u becomes stable or disappears, then in the last step, i.e.

∀ i > 0 • (σi(u)(stable) = 1 ∨ u /∈ dom(σi)) =⇒ i = n

Let 0 = k1 < k2 < · · · < kN < n be the maximal sequence of indices
such that uki

= u for 1 ≤ i ≤ N . Then we call the sequence

(σ0(u) =) σk1
(u), σk2

(u) . . . , σkN
(u), σn(u)

a (!) run-to-completion step of u (from (local) configuration σ0(u) to σn(u)).



Divergence

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
st
m
st
ep

–

7/55

We say, object u can diverge on reception cons0 from (local) configuration σ0(u) if
and only if there is an infinite, consecutive sequence

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)
(cons1,Snd1)
−−−−−−−−→

u1

. . .

where ui = u for infinitely many i ∈ N0 and σi(u)(stable) = 0, i > 0,
i.e. u does not become stable again.

Run-to-Completion Step: Discussion.

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
st
m
st
ep

–

8/55

Our definition of RTC-step takes a global and non-compositional view, that is:

• In the projection onto a single object
we still see the effect of interaction with other objects.

• Adding classes (or even objects) may change the divergence behaviour of existing ones.

• Compositional would be: the behaviour of a set of objects is determined by the behaviour
of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an
interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)

• (A): Refer to private features only via “self”.

(Recall that other objects of the same class can modify private attributes.)

• (B): Let objects only communicate by events, i.e.
don’t let them modify each other’s local state via links at all.



Putting It All Together

–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

9/55

Initial States

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
to
g
et
h
er

–

10/55

Recall: a labelled transition system is (S,A,−→, S0). We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model

(CD ,SM ,OD).

And set
S0 = {(σ, ε) | σ ∈ G−1(OD), OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).
We can read that as an abbreviation for an object diagram.



Semantics of UML Model (So Far)

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
to
g
et
h
er

–

11/55

The semantics of the UML model

M = (C D ,SM ,OD)

where

• some classes in C D are stereotyped as ‘signal’ (standard),
some signals and attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over C D ,

is the transition system (S,A,−→, S0) constructed on the previous slide(s).

The computations of M are the computations of (S,A,−→, S0).

OCL Constraints and Behaviour

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
to
g
et
h
er

–

12/55

• Let M = (CD ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).



OCL Constraints and Behaviour

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
to
g
et
h
er

–

12/55

• Let M = (CD ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).

Pragmatics:

• In UML-as-blueprint mode, if SM doesn’t exist yet, then M = (C D , ∅,OD) is typically
asking the developer to provide SM such that M′ = (CD ,SM ,OD) is consistent.

If the developer makes a mistake, then M′ is inconsistent.

• Not common: if SM is given, then constraints are also considered when choosing
transitions in the RTC-algorithm. In other words: even in presence of mistakes, the SM

never move to inconsistent configurations.



Last Missing Piece: Create and Destroy Transformer

–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

13/55

Transformer: Create

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

14/55

abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the

object denoted by expression expr .

well-typedness

expr : TD, v ∈ atr(D),
atr(C) = {〈v1 : T1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .
observables

. . .
(error) conditions

IJexprK(σ, β) not defined.



Transformer: Create

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

14/55

abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the

object denoted by expression expr .

well-typedness

expr : TD, v ∈ atr(D),
atr(C) = {〈v1 : T1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .
observables

. . .
(error) conditions

IJexprK(σ, β) not defined.

• We use an “and assign”-action for simplicity — it doesn’t add or remove expressive
power, but moving creation to the expression language raises all kinds of other problems
since then expressions would need to modify the system state.

• Also for simplicity: no parameters to construction (∼ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

How To Choose New Identities?

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

15/55

• Re-use: choose any identity that is not alive now, i.e. not in dom(σ).

• Doesn’t depend on history.

• May “undangle” dangling references – may happen on some platforms.

• Fresh: choose any identity that has not been alive ever, i.e. not in dom(σ) and
any predecessor in current run.

• Depends on history.

• Dangling references remain dangling – could mask “dirty” effects of platform.



Transformer: Create

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

16/55

abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the

object denoted by expression expr .

well-typedness

expr : TD, v ∈ atr(D),
atr(C) = {〈v1 : T1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

((σ, ε), (σ′, ε′)) ∈ tcreate(C,expr ,v)[ux]

iff
σ′ = σ[u0 7→ σ(u0)[v 7→ u]] ∪ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}},

ε′ = [u](ε); u ∈ D(C) fresh, i.e. u 6∈ dom(σ);
u0 = IJexprK(σ, ux); di = IJexpr0i K(σ, ∅) if expr

0
i 6= ‘’ and

arbitrary value from D(Ti) otherwise.
observables

Obscreate[ux] = {(∗, u)}
(error) conditions

IJexprK(σ, ux) not defined.

Create Transformer Example

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

17/55

SMC :
s1 s2

/n := new C

create(C, expr , v)

tcreate(C,expr ,v)[ux](σ, ε) = ...

σ: d : D

n = ∅

:σ′

ε: :ε′



Transformer: Destroy

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

18/55

abstract syntax concrete syntax

destroy(expr)
intuitive semantics

Destroy the object denoted by expression expr .

well-typedness

expr : TC , C ∈ C

semantics

. . .
observables

Obsdestroy[ux] = {(ux,⊥, (+, ∅), u)}
(error) conditions

IJexprK(σ, β) not defined.

What to Do With the Remaining Objects?

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

19/55

Assume object u0 is destroyed. . .

• object u1 may still refer to it via association r:

• allow dangling references?

• or remove u0 from σ(u1)(r)?

• object u0 may have been the last one linking to object u2:

• leave u2 alone?

• or remove u2 also? (garbage collection)

• Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which don’t
provide garbage collection — and models shall (in general) be correct without assumptions
on target platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to analyse.
Valid proposal for simple analysis: monotone frame semantics, no destruction at all.



Transformer: Destroy

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
a
ct
la
n
g
cd

–

20/55

abstract syntax concrete syntax

destroy(expr)
intuitive semantics

Destroy the object denoted by expression expr .

well-typedness

expr : TC , C ∈ C

semantics

tdestroy(expr)[ux](σ, ε) = {(σ′, ε)}

where σ′ = σ|dom(σ)\{u} with u = IJexprK(σ, ux).

observables

Obsdestroy(expr)[ux] = {(+, u)}
(error) conditions

IJexprK(σ, ux) not defined.

Hierarchical State-Machines

–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

24/55



The Full Story

–
1
4
–
2
0
1
6
-0
1
-1
2
–
S
h
ie
rs
yn

–

25/55

UML distinguishes the following kinds of states:

example

simple state

s1
entry/actentry1

do/actdo1
exit/actexit1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example
pseudo-state
initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

References

–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

54/55



References

–
1
4
–
2
0
1
6
-0
1
-1
2
–
m
a
in

–

55/55

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.


