— 14 — 2016-01-12 — main —

Software Design, Modelling and Analysis in UML

Lecture 14: Core State Machines IV

2016-01-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 14 — 2016-01-12 — Sprelim —

Last Lecture:

e Transitions by Rule (i) to (v).

This Lecture:
o Educational Objectives: Capabilities for following tasks/questions.
e What is a step / run-to-completion step?
o What is divergence in the context of UML models?
e How to define what happens at “system / model startup”?
e What are roles of OCL contraints in behavioural models?
Is this UML model consistent with that OCL constraint?
What do the actions create / destroy do? What are the options and our choices (why)?

Content:

Step / RTC-Step revisited, Divergence

Initial states
e Missing pieces: create / destroy transformer

e A closer look onto code generation

Maybe: hierarchical state machines

Step and Run-to-Completion

— 14 — 2016-01-12 — main —

Notions of Steps: The Step

Note: we call one evolution

(cons,Snd)
_—

(0,¢€) (o’,€")
u
a step. w case of s &) +Gs)
Thus in our setting, a step directly corresponds to
one object (namely u) taking a single transition between regular states.

(We will extend the concept of “single transition” for hierarchical state machines.)

That is: We're going for an interleaving semantics without true parallelism.

— 14 — 2016-01-12 — Sstmstep —

Notions of Steps: The Run-to-Completion Step

What is a run-to-completion step...?

o Intuition: a maximal sequence of steps of one object,
where the first step is a dispatch step, all later steps are continue steps,
and the last step establishes stability (or object disappears).

Note: while one step corresponds to one transition in the state machine,
a run-to-completion step is in general not syntacically definable:

one transition may be taken multiple times during an RTC-step.

Example: SMC" [x>0]/z:=0—1

Elz > 0]/ ® A
[z =10] @

o:
wC ¥z 2 21 x:0 =0
=2 ((u—);ﬂ'\ $35 D é-n —D ey, — :é"‘"

- e Tw lle0 Go shle-0 (;;i\ k0 (ix) b=

¢F for u (('.\ @ @ @ @

— 14 — 2016-01-12 — Sstmstep —

Notions of Steps: The Run-to-Completion Step Cont’d

Proposal: Let

(conso,Sndo) (consp—1,5ndn—1)

(00750) (O'n,En), n > 07
uo Un—1

be a finite (1), non-empty, maximal, consecutive sequence such that

o (conso, Sndo) indicates dispatching to u := uo (by Rule (ii)§ or (,))
i.e. cons = {ug}, ug € dom(oo) N 2(&),

o if u becomes stable or disappears, then in the last step, i.e.

Vi > 0e (o;(u)(stable) =1V u ¢ dom(o;)) = i=n

Let 0 = k1 < k2 < --- < kn < n be the maximal sequence of indices
such that ug, = u for 1 <4 < N. Then we call the sequence

(Uo(u) =) oK (u)a Oky (u) s Oky (u)7 Un(u)

— 14 — 2016-01-12 — Sstmstep —

a (!) run-to-completion step of u (from (local) configuration oo (u) to on(u)).

Divergence

We say, object u can diverge on reception consg from (local) configuration og(u) if
and only if there is an infinite, consecutive sequence

01,€&1

) (cons(:Sndo) (
0 ul

(00, €0) (eonsy, Sndy),

where u; = u for infinitely many ¢ € INy and o;(u)(stable) = 0, i > 0,
i.e. u does not become stable again.

Ix>0 /slip

&
D
K= 2+

— 14 — 2016-01-12 — Sstmstep —

Run-to-Completion Step: Discussion.

Our definition of RTC-step takes a global and non-compositional view, that is:

o In the projection onto a single object
we still see the effect of interaction with other objects.

o Adding classes (or even objects) may change the divergence behaviour of existing ones.

e Compositional would be: the behaviour of a set of objects is determined by the behaviour
of each object “in isolation”.
Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an
interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)
e (A): Refer to private features only via “self”.
(Recall that other objects of the same class can modify private attributes.)

o (B): Let objects only communicate by events, i.e.
don't let them modify each other’s local state via links at all.

— 14 — 2016-01-12 — Sstmstep —

— 14 — 2016-01-12 — main —

Putting It All Together

Initial States

— 14 — 2016-01-12 — Stogether —

Recall: a labelled transition system is (S, A, —, Sp). We have

e S: system configurations (o, ¢)
(cons,Snd)
%

(o', €.

e —: labelled transition relation (o, ¢)
u

Wanted: initial states .Sj.

Proposal:
Require a (finite) set of object diagrams OD as part of a UML model

(€D, 54 ,69).

And set
So ={(o,¢) |0 € G_l((’)D), OD e 0P, e empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).

We can read that as an abbreviation for an object diagram.

10/55

Semantics of UML Model (So Far)

The semantics of the UML model
M= (€D, 9H4,09)

where

o some classes in €% are stereotyped as ‘signal’ (standard),
some signals and attributes are stereotyped as ‘external’ (non-standard),

o there is a 1-to-1 relation between classes and state machines,
e 09 is a set of object diagrams over €%,

is the transition system (S, A, —, Sy) constructed on the previous slide(s).

The computations of M are the computations of (S, A, —, Sp).

— 14 — 2016-01-12 — Stogether —

OCL Constraints and Behaviour

o Let M =(¢2,%4,02) be a UML model.
o We call M consistent iff, for each OCL constraint expr € InV(¢2)y hv (:f){)

o [= expr for each “reasonable point” (o, ¢) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(A#) similar to Inv(€¢ D).

v
0
codl ¢ v st=s1
imply
X20

— 14 — 2016-01-12 — Stogether —

1155

12/55

OCL Constraints and Behaviour

— 14 — 2016-01-12 — Stogether —

o Let M = (€9, 54,02) be a UML model.
e We call M consistent iff, for each OCL constraint expr € Inv(€¢2),

o [= expr for each “reasonable point” (o, ¢) of computations of M.

(Cf. exercises and tutorial for discussion of “reasonable point”.)

Note: we could define Inv(£#) similar to In(€ 2D).

Pragmatics:

e In UML-as-blueprint mode, if ## doesn't exist yet, then M = (¢2,0, 02) is typically
asking the developer to provide .~ such that M’ = (€9, 54 ,09) is consistent.

If the develo?er makes a mistake, then M’ is inconsistent.
L‘i"_f‘ [« w»\cwvwav-)

. if A4 is given, then constraints are also considered when choosing

transitions in the RTC-algorithm. In other words: even in presence of mistakes, the Z#

never move to inconsistent configurations.

°

12/55

=22 E‘;_oj (D wotdd s “broee”

@_E/E’;)E,g @ wmodel beladows

Considus m.sw.,.;.isl

Sy Ge) wonll uot Le
\,@L,)@ trhe i x<0O
ni= aekl \LVI!E ﬂ‘ (e,

— 14 — 2016-01-12 — main —

Last Missing Piece: Create and Destroy Transformer

Transformer: Create

— 14 - 2016-01-12 — Sactlanged —

abstract syntax concrete syntax

create(C, expr,v) expl.v 2= new C
intuitive semantics
Create an object of class C' and assign it to attribute v of the

object denoted by expression expr.
well-typedness
expr: Tp, v € atr(D), V:Caqs
atr(C) = {{v1 : Ty, exprd) | 1 <i < n}

semantics

observables

(error) conditions
I[expr] (o, B) not defined.

is¥ead
xi= (o C{)'j + (MwD).&;
ek

1:: wew Cl,'
dewp, = woty Dj
XiT J-W_.S + 'k"P).Z'f

1355

14/55

Transformer: Create

— 14 - 2016-01-12 — Sactlanged —

abstract syntax concrete syntax
create(C, expr,v)
intuitive semantics
Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.
well-typedness
expr : Tp, v € atr(D),
atr(C) = {{v1 : Ty, exprd) | 1 <i < n}
semantics

observables

(error) conditions

I[expr] (o, B) not defined.

o We use an “and assign”-action for simplicity — it doesn't add or remove expressive
power, but moving creation to the expression language raises all kinds of other problems
since then expressions would need to modify the system state.

o Also for simplicity: no parameters to construction (~ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

How To Choose New Identities?

— 14 - 2016-01-12 — Sactlanged —

e Re-use: choose any identity that is not alive now, i.e. not in dom(o).

e Doesn’t depend on history.

e May “undangle” dangling references — may happen on some platforms.

e Fresh: choose any identity that has not been alive ever, i.e. not in dom(c) and
any predecessor in current run.

e Depends on history.
e Dangling references remain dangling — could mask “dirty” effects of platform.

14/55

15/55

Transformer: Create

— 14 - 2016-01-12 — Sactlanged —

]

abstract syntax concrete syntax

create(C, expr,v)

intuitive semantics

Create an object of class C' and assign it to attribute v of the
object denoted by expression expr.

well-typedness

expr : Tp, v € atr(D),
atr(C) = {{v1 : Ty, expr?) | 1 <i < n}

semantics

((07 5)7 (0—/751)) € tcrea e(C,expr,v [uw]
Swal ';F(o) Savles b soif
|

’“___/‘M\
o' =olug — o(ug)[v] U {u— {v; = d; | 1 <i<n}},
g =ul(e); ug Z(C) fresh, i.e_u & dom(g);

" ug = Iexpr](o,us); di = I[exprd](o,0) if expr? 7é$ and

arbitrary value from Z(T;) otherwise.

0
observables —— cenka,

Obscreate[ua:] = {(*au)}
(error) conditions
I[expr](c,us;) not defined.

Create Transformer Example

— 14 - 2016-01-12 — Sactlanged —

SMyp: /n:=new C

(51

create(C, expr,v)

tcreate(C,EIPTﬂ’) [um](07 E) = a("é);z
<
d:D
p— ((e,u).0)
E=Sa d
I3 =0

(i)

—lj—

){v??
970

16/55

17/55

Transformer: Destroy

— 14 - 2016-01-12 — Sactlanged —

abstract syntax concrete syntax
destroy(expr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr : Tc, C €€
semantics

observables
Obsdestroy[“x] = {(u:m J—) <+? (Z))’ U)}
(error) conditions
I[expr](o, B) not defined.

18/55

What to Do With the Remaining Objects?

— 14 - 2016-01-12 — Sactlanged —

Assume object ug is destroyed. ..

e object u; may still refer to it via association 7:
e allow dangling references?
e or remove ug from o(uy)(r)?

e object ug may have been the last one linking to object ws:
o leave uy alone?

e or remove uy also? (garbage collection)

e Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which don’t
provide garbage collection — and models shall (in general) be correct without assumptions
on target platform.

But: the more "dirty” effects we see in the model, the more expensive it often is to analyse.
Valid proposal for simple analysis: monotone frame semantics, no destruction at all.

19/55

Transformer: Destroy

— 14 - 2016-01-12 — Sactlanged —

— 14 — 2016-01-12 — main —

abstract syntax concrete syntax
destroy(ezpr)
intuitive semantics
Destroy the object denoted by expression expr.
well-typedness
expr : Tc, C €€
semantics fincho~ pestachon
p[[uw] (Ua 5) = {(0'/? 53}, il“[“l(a)
where 0’ = 0|qom(o)\u} With u = I[expr](c, us).
observables

Z(:destroy(ez,

Obsdestroy(ezpr) [U‘ac] = {(+a U’)}
(error) conditions
I[expr](o,uy) not defined.

Hierarchical State-Machines

20/55

24/55

The Full Story

UML distinguishes the following kinds of states:

example

example

simple state

final state
composite state

I
.
>
o
Q
2
5 AND
o
8
-
<
o
E
o
N
I
<
2
|
I
=
:
1S
|
N
8
-
<
o
E
o
N
|
<
&
|

entry/act{™"”
do/ act$°
exit/ act§™
Ey/actp,

E,/actg,

pseudo-state
initial
(shallow) history
deep history

fork/join

junction, choice
entry point

exit point
terminate

submachine state

References

25/55

54/55

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal /2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal /2011-08-06.

— 14 — 2016-01-12 — main —

55/55

