Software Design, Modelling and Analysis in UML Lecture 15: Hierarchical State Machines I

2016-01-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- 15 - 2016-01-14 - main

- step, RTC-step, divergence
- initial state, UML model semantics (so far)
- create, destroy actions

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - What is simple state, OR-state, AND-state?
 - What is a legal state configuration?
 - What is a legal transition?
 - How is enabledness of transitions defined for hierarchical state machines?

• Content:

- Legal state configurations
- Legal transitions
- Rules (i) to (v) for hierarchical state machines

Hierarchical State-Machines

The Full Story

UML distinguishes the following kinds of states:

NEW: ({s1, 52, 53, 54, 5, 40}, {t1, t2],

{t, H2 ({5,}, {52,53}), ... } {t, H (-, +44, 546), ... }

- 15 - 2016-01-14 - Shiersyn

5/36

Representing All Kinds of States

• Until now:

$$(S, s_0, \rightarrow), \quad s_0 \in S, \rightarrow \subseteq S \times (\mathscr{E} \cup \{ _ \}) \times Expr_{\mathscr{I}} \times Act_{\mathscr{I}} \times S$$

• From now on: (hierarchical) state machines

$$(S, kind, region, \rightarrow, \psi, annot)$$

where

(as before),
(new)
(new)
(changed)
(new)
(new)

 $(s_0 \text{ is then redundant} - \text{replaced by proper state (!) of kind '$ *init*'.)

From UML to Hierarchical State Machine: By Example

From UML to Hierarchical State Machine: By Example

tr[gd]/act	
1 t, s annot	
/	
·/	

... denotes $(S, kind, region, \rightarrow, \psi, annot) =$

$$\underbrace{\{\{q, \text{inil}\}, (s, sl), (p, \text{fin}), (top, sl)\}}_{S, kind}, \\ \underbrace{\{q, \text{inil}\}, (s, sl), (p, \text{fin}), (top, sl)\}}_{Fegion}, \\ \underbrace{\{t_n, t_l\}, \{t_n \mapsto (\{q\}, \{s\}\}, t_2 \mapsto (\{s\}, \{s\}\}, \{s\}\})\}}_{\downarrow}, \\ \underbrace{\{t_n \mapsto (t_n, \{sl, \{sl, nct\}, t_2 \mapsto \text{dunot}\})\}}_{annot}$$

- 15 - 2016-01-14 - Shiersyn -

Well-Formedness: Regions

	$\in S$	kind	$region \subseteq 2^S, S_i \subseteq S$	$child \subseteq S$
final state	s	fin	Ø	Ø
pseudo-state	s	init,	Ø	Ø
simple state	s	st	Ø	Ø
composite state	s	st	$\{S_1,\ldots,S_n\}, n \ge 1$	$S_1 \cup \cdots \cup S_n$
implicit top state	top	st	$\{S_1\}$	S_1

- Final and pseudo states must not comprise regions.
- States $s \in S$ with kind(s) = st may comprise regions.

Naming conventions can be defined based on regions:

- No region: simple state.
- One region: OR-state.
- Two or more regions: AND-state.

15 - 2016-01-14 - Shiersyn

- Each state (except for *top*) **must** lie in exactly one region.
- **Note**: The region function induces a **child** function.
- Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

8/36

Well-Formedness Continued

- Each non-empty region has **exactly one** initial pseudo-state and at least one transition from there to a state of the region, i.e.
 - for each $s \in S$ with $region(s) = \{S_1, \ldots, S_n\}$,
 - for each $1 \le i \le n$, there exists exactly one initial pseudo-state $(s_1^i, init) \in S_i$ and at least one transition $t \in \rightarrow$ with s_1^i as source,
- Initial pseudo-states are not targets of transitions.

For simplicity:

- 15 - 2016-01-14 - Shiersyn

- The target of a transition with initial pseudo-state source in S_i is (also) in S_i .
- Transitions from initial pseudo-states have no trigger or guard,
 i.e. t ∈→ from s with kind(s) = st implies annot(t) = (_, true, act).
- Final states are not sources of transitions.

Plan

- 15 - 2016-01-14 - Shiersyn -

- Composite states.
- Initial pseudostate, final state.
- Entry/do/exit actions, internal transitions.
- History and other pseudostates, the rest.

10/36

Composite States

Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of

12/36

Composite States: Blessing or Curse?

Syntax: Fork/Join

• For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.

$$\psi: (\to) \to (2^S \setminus \emptyset) \times (2^S \setminus \emptyset)$$

• For instance,

- 15 - 2016-01-14 - Shierstm

• Naming convention: $\psi(t) = (source(t), target(t))$.

State Configuration

- The type of (implicit attribute) st is from now on a set of states, i.e. $\mathscr{D}(S_{M_C})=2^S$
- A set $S_1 \subseteq S$ is called (legal) state configurations if and only if
 - $top \in S_1$, and
 - with each state $s \in S_1$ that has a non-empty region $\emptyset \neq R \in region(s)$, exactly one (non pseudo-state) child of s is in S_1 , i.e.

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $top \leq s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,
- $s' \leq s$ and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.

- 15 - 2016-01-14 - Shierstm

Maximal

- The least common ancestor is the function $lca: 2^S \to S$ such that
 - The states in S_1 are (transitive) children of $lca(S_1)$, i.e.

$$lca(S_1) \leq s$$
, for all $s \in S_1 \subseteq S$

- $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$
- Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).

18/36

Orthogonal States

- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
 - they are unordered, i.e. $s_1 \not\leq s_2$ and $s_2 \not\leq s_1$, and
 - they live in different regions of an AND-state, i.e.

$$\exists s, region(s) = \{S_1, \dots, S_n\}, 1 \le i \ne j \le n : s_1 \in child(S_i) \land s_2 \in child(S_j),$$

-15 - 2016-01-14 - Shierstm

-15 - 2016-01-14 - Shierstm

Consistent State Sets

- A set of states $S_1 \subseteq S$ is called **consistent**, denoted by $\downarrow S_1$, if and only if for each $s,s'\in S_1$,
 - $s \leq s'$,
 - $s' \leq s$, or
 - $s \perp s'$.

- 15 - 2016-01-14 - Shierstm

20/36

Legal Transitions

A hiearchical state-machine $(S, kind, region, \rightarrow, \psi, annot)$ is called well-formed if and only if for all transitions $t \in \rightarrow$,

- source and destination are consistent, i.e. \downarrow source(t) and \downarrow target(t),
- source (and destination) states are pairwise orthogonal, i.e.
 - forall $s, s' \in source(t)$ ($\in target(t)$), $s \perp s'$,
- the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup source(t)$.

Recall: final states are not sources of transitions.

Example:

21/36

The Depth of States

- depth(top) = 0,
- depth(s') = depth(s) + 1, for all $s' \in child(s)$

22/36

Enabledness in Hierarchical State-Machines

• The scope ("set of possibly affected states") of a transition t is the least common region (!) of

 $source(t) \cup target(t).$

- Two transitions t_1, t_2 are called **consistent** if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The **priority** of transition t is the depth of its innermost source state, i.e.

 $prio(t) := \max\{depth(s) \mid s \in source(t)\}$

- A set of transitions $T \subseteq \rightarrow$ is **enabled** in an object u if and only if • T is consistent,
- ${\bf Y} \bullet T$ is maximal wrt. priority (all transitions in T have the same) highest priority), in Their scope
- all transitions in T share the same trigger,
- for all $t \in T$, the source states are active, i.e.

$$source(t) \subseteq \sigma(u)(st) \ (\subseteq S).$$

as before

• all guards are satisfied by $\sigma(u)$

23/36

- Let T be a set of transitions <u>enabled</u> in u.
- Then $(\sigma, \varepsilon) \xrightarrow{(cons,Snd)} (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of T,

i.e. for simple states the simple states themselves, for composite states the initial states,

- σ' , ε' , cons, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - $\bullet\,$ the exit action transformer (\rightarrow later) of all affected states, highest depth first,
 - the transformer of t,
 - ullet the entry action transformer (\rightarrow later) of all affected states, lowest depth first.

 \rightsquigarrow adjust Rules (ii), (iii), (v) accordingly.

24/36

Initial and Final States

Initial Pseudostate

Principle:

15 - 2016-01-14 - Sinitfin

- when entering a non-simple state,
- then go to the destination state of a transition with initial pseudo-state source,
- execute the action of the chosen initiation transition(s) between exit and entry actions (→ later).

Recall: For simplicity, we assume exactly one initiation transitions — could be more, choose non-deterministically.

Special case: the region of *top*.

- If class C has a state-machine, then "create-C transformer" is the concatenation of
 - the transformer of the "constructor" of C (here not introduced explicitly) and
 - a transformer corresponding to one initiation transition of the top region.

26/36

Final States

annot	

- If $(\sigma, \varepsilon) \xrightarrow{(cons,Snd)}_{u} (\sigma', \varepsilon')$ and all simple states in $st \in \sigma(u)(st)$ are final, i.e. kind(s) = fin, then
 - stay unstable if there is a common parent of the simple states in $\sigma(u)(st)$ which is source of a transition without trigger and satisfied guard,
 - otherwise kill *u*.
- \rightsquigarrow adjust Rules (i), (ii), (iii), and (v) accordingly.

Observation: u never "survives" reaching a state (s, fin) with $s \in child(top)$.

27/36

References

35/36

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.