
–
1
5
–
2
0
1
6
-0
1
-1
4
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines I

2016-01-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
p
re
li
m

–

2/36

Last Lecture:

• step, RTC-step, divergence

• initial state, UML model semantics (so far)

• create, destroy actions

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is simple state, OR-state, AND-state?

• What is a legal state configuration?

• What is a legal transition?

• How is enabledness of transitions defined for hierarchical state machines?

• Content:

• Legal state configurations

• Legal transitions

• Rules (i) to (v) for hierarchical state machines

Hierarchical State-Machines

–
1
5
–
2
0
1
6
-0
1
-1
4
–
m
a
in

–

3/36

The Full Story

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

4/36

UML distinguishes the following kinds of states:

example

simple state

s1
entry/actentry1

do/actdo1
exit/actexit1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example
pseudo-state
initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

Representing All Kinds of States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

5/36

• Until now:

(S, s0,→), s0 ∈ S,→ ⊆ S × (E ∪ { })× ExprS ×ActS × S

Representing All Kinds of States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

5/36

• Until now:

(S, s0,→), s0 ∈ S,→ ⊆ S × (E ∪ { })× ExprS ×ActS × S

• From now on: (hierarchical) state machines

(S, kind , region,→, ψ, annot)

where

• S ⊇ {top} is a finite set of states (as before),

• kind : S → {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
is a function which labels states with their kind, (new)

• region : S → 22
S

is a function which characterises the regions of a state,
(new)

• → is a set of transitions, (changed)

• ψ : (→) → 2S × 2S is an incidence function, and (new)

• annot : (→) → (E ∪ { })× Expr
S

× ActS

provides an annotation for each transition. (new)

(s0 is then redundant — replaced by proper state (!) of kind ‘init’.)

From UML to Hierarchical State Machine: By Example

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

6/36

(S, kind , region,→, ψ, annot)

example ∈ S kind region

simple state s s st ∅

final state q fin ∅

composite state

OR

s

s1
s2

s3

, s st {{s1, s2, s3}}

AND

s

s1 s2 s3

s′1 s′2 s′3

s st

region

{{s1, s
′

1}, {s2, s
′

2},
{s3, s

′

3}}

submachine state (later) - - -

pseudo-state •, . . . q init, . . . ∅
︸ ︷︷ ︸

(s,kind(s)) for short

From UML to Hierarchical State Machine: By Example

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

7/36

•

s

tr [gd]/act

annot

... denotes (S, kind , region,→, ψ, annot) =

({(top, st), (s1, init), (s, st), (s2, fin)}
︸ ︷︷ ︸

S,kind

,

{top 7→ {{s1, s, s2}}, s1 7→ ∅, s 7→ ∅, s2 7→ ∅}
︸ ︷︷ ︸

region

,

{t1, t2}
︸ ︷︷ ︸

→

, {t1 7→ ({s1}, {s}), t2 7→ ({s}, {s2})}
︸ ︷︷ ︸

ψ

,

{t1 7→ (tr , gd , act), t2 7→ annot}
︸ ︷︷ ︸

annot

)

Well-Formedness: Regions

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

8/36

∈ S kind region ⊆ 2S , Si ⊆ S child ⊆ S
final state s fin ∅ ∅
pseudo-state s init, . . . ∅ ∅
simple state s st ∅ ∅
composite state s st {S1, . . . , Sn}, n ≥ 1 S1 ∪ · · · ∪ Sn
implicit top state top st {S1} S1

• Final and pseudo states must not comprise regions.

• States s ∈ S with kind(s) = st may comprise regions.

Naming conventions can be defined based on regions:

• No region: simple state.

• One region: OR-state.

• Two or more regions: AND-state.

• Each state (except for top) must lie in exactly one region.

• Note: The region function induces a child function.

• Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

Well-Formedness Continued

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

9/36

• Each non-empty region has exactly one initial pseudo-state and at least one
transition from there to a state of the region, i.e.

• for each s ∈ S with region(s) = {S1, . . . , Sn},

• for each 1 ≤ i ≤ n, there exists exactly one initial pseudo-state (si1, init) ∈ Si and
at least one transition t ∈→ with si1 as source,

• Initial pseudo-states are not targets of transitions.

For simplicity:

• The target of a transition with initial pseudo-state source in Si is (also) in Si.

• Transitions from initial pseudo-states have no trigger or guard,
i.e. t ∈→ from s with kind(s) = st implies annot(t) = (, true, act).

• Final states are not sources of transitions.

•

s

tr

DON’T!

[gd]

DON’T!

/act

annot

Plan

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
yn

–

10/36

example

simple state

s1
entry/actentry1

do/actdo1
exit/actexit1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example
pseudo-state
initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

• Composite states.

• Initial pseudostate, final state.

• Entry/do/exit actions, internal transitions.

• History and other pseudostates, the rest.

Composite States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
m
a
in

–

11/36

Composite States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

12/36

• In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

• Idea: in Tron, for the Player’s Statemachine,
instead of

n

•
w e

s

resigned

X/
X/

X/

X/

write

•

n

•
w e

s

resigned

X/

Composite States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

13/36

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

write

•

n

•
w e

s

•
slow

fast

F/F/

Composite States: Blessing or Curse?

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

14/36

•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
• what may happen on E?

• what may happen on E,F?

• can E,G kill the object?

• ...

Plan:

States:

• what is the type of the im-
plicit st attribute?

• what are legal state config-
urations?

Transitions:

• what are legal / well-formed
transitions?

• when is a legal transition en-
abled?

• which effects do transitions
have?

Syntax: Fork/Join

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

15/36

• For simplicity, we consider transitions with (possibly) multiple sources and targets,
i.e.

ψ : (→) → (2S \ ∅)× (2S \ ∅)

• For instance,

s1

s2

s3

s4

s5

s6

tr [gd]/act

translates to

(S, kind , region, {t1}
︸︷︷︸

→

, {t1 7→ ({s2, s3}, {s5, s6})}
︸ ︷︷ ︸

ψ

, {t1 7→ (tr , gd , act)}
︸ ︷︷ ︸

annot

)

• Naming convention: ψ(t) = (source(t), target(t)).

State Configuration

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

16/36

• The type of (implicit attribute) st is from now on a set of states, i.e.
D(SMC

) = 2S

• A set S1 ⊆ S is called (legal) state configurations if and only if

• top ∈ S1, and

• with each state s ∈ S1 that has a non-empty region ∅ 6= R ∈ region(s),
exactly one (non pseudo-state) child of s is in S1, i.e.

|{s ∈ R | kind(s) ∈ {st, fin}} ∩ S1| = 1.

A Partial Order on States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

17/36

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s

s1
s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

Least Common Ancestor

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

18/36

• The least common ancestor is the function lca : 2S → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is minimal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s

s1
s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

Orthogonal States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

19/36

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they are unordered, i.e. s1 6≤ s2 and s2 6≤ s1, and

• they live in different regions of an AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn}, 1 ≤ i 6= j ≤ n : s1 ∈ child(Si) ∧ s2 ∈ child(Sj),

s

s1
s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

Consistent State Sets

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

20/36

• A set of states S1 ⊆ S is called consistent, denoted by ↓ S1,
if and only if for each s, s′ ∈ S1,

• s ≤ s′,

• s′ ≤ s, or

• s ⊥ s′.

s

s1
s2

s3

s′

s′1 s′2 s′3

s′′1 s′′2 s′′3

Legal Transitions

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

21/36

A hiearchical state-machine (S, kind , region,→, ψ, annot) is called well-formed if
and only if for all transitions t ∈→,

• source and destination are consistent, i.e. ↓ source(t) and ↓ target(t),

• source (and destination) states are pairwise orthogonal, i.e.

• forall s, s′ ∈ source(t) (∈ target(t)), s ⊥ s′,

• the top state is neither source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

Recall: final states are not sources of transitions.

Example:
•

•

s1

s2
•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

The Depth of States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

22/36

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

Example:

•

•

s1

s2
•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Enabledness in Hierarchical State-Machines

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

23/36

• The scope (“set of possibly affected states”) of a transition t is the least
common region (!) of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}

• A set of transitions T ⊆→ is enabled in an object u if and only if

• T is consistent,

• T is maximal wrt. priority (all transitions in T have the same, highest priority),

• all transitions in T share the same trigger,

• for all t ∈ T , the source states are active, i.e.

source(t) ⊆ σ(u)(st) (⊆ S).

• all guards are satisfied by σ(u), and

Transitions in Hierarchical State-Machines

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
h
ie
rs
tm

–

24/36

• Let T be a set of transitions enabled in u.

• Then (σ, ε)
(cons,Snd)
−−−−−−−→ (σ′, ε′) if

• σ′(u)(st) consists of the target states of T ,

i.e. for simple states the simple states themselves,
for composite states the initial states,

• σ′, ε′, cons, and Snd are the effect of firing each transition t ∈ T
one by one, in any order, i.e. for each t ∈ T ,

• the exit action transformer (→ later) of all affected states, highest depth first,

• the transformer of t,

• the entry action transformer (→ later) of all affected states, lowest depth first.

 adjust Rules (ii), (iii), (v) accordingly.

Initial and Final States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
m
a
in

–

25/36

Initial Pseudostate

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
in
it
fi
n
–

26/36

•

s0

s

s1 s2

s2,1 s2,2
•

s3

/act1

tr [gd]/act
•

/act2
/act3

Principle:

• when entering a non-simple state,

• then go to the destination state of a transition with initial pseudo-state source,

• execute the action of the chosen initiation transition(s) between exit and entry
actions (→ later).

Recall: For simplicity, we assume exactly one initiation transitions — could be more, choose

non-deterministically.

Special case: the region of top.

• If class C has a state-machine, then “create-C transformer” is the concatenation of

• the transformer of the “constructor” of C (here not introduced explicitly) and

• a transformer corresponding to one initiation transition of the top region.

Final States

–
1
5
–
2
0
1
6
-0
1
-1
4
–
S
in
it
fi
n
–

27/36

annot

• If (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

and all simple states in st ∈ σ(u)(st) are final, i.e. kind(s) = fin, then

• stay unstable if there is a common parent of the simple states in σ(u)(st)
which is source of a transition without trigger and satisfied guard,

• otherwise kill u.

 adjust Rules (i), (ii), (iii), and (v) accordingly.

Observation: u never “survives” reaching a state (s, fin) with s ∈ child(top).

Observation:

s1 s2 s3
E/act1 /act2

vs.

s1

s2

•
s3

E/act1 /act2

References

–
1
5
–
2
0
1
6
-0
1
-1
4
–
m
a
in

–

35/36

References

–
1
5
–
2
0
1
6
-0
1
-1
4
–
m
a
in

–

36/36

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

