— 15 — 2016-01-14 — main —

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines [

2016-01-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 15 — 2016-01-14 — Sprelim —

Last Lecture:
o step, RTC-step, divergence
e initial state, UML model semantics (so far)

e create, destroy actions

This Lecture:

o Educational Objectives: Capabilities for following tasks/questions.
e What is simple state, OR-state, AND-state?
o What is a legal state configuration?

o What is a legal transition?
e How is enabledness of transitions defined for hierarchical state machines?

o Content:

o Legal state configurations
o Legal transitions

e Rules (i) to (v) for hierarchical state machines

— 15 — 2016-01-14 — main —

The Full Story

Hierarchical State-Machines

UML distinguishes the following kinds of states:

example

example

simple state

final state

composite state

OR

AND

— 15 — 2016-01-14 — Shiersyn —

pseudo-state

entry/(zctf" v initial

do/act§°

e
1

(shallow) history

exit/ac
Ey/actp,

deep histor
E,/actg, y

fork/join

junction, choice
entry point
exit point

terminate

submachine state

Representing All Kinds of States

e Until now: .';.‘é:ﬁk 9;?:,_‘ '“ﬁ" a"“'/ ol #&
(S,s0,—), S0€S8,— CSx(EU{}) X Expry x Acty x S
/ |
hE

b"f)@ M ({57.-‘2?, Sa,
{ (51, - k“’l s(.fa Sl)f

VAR ({5,,SZ,S$,Sy,5i‘hfs, {i"l fzf,
f‘é-'")({SJI {52,83”/ j
ff-.l-ﬁ (= e, ‘Af’): S 3

— 15 — 2016-01-14 — Shiersyn —

Representing All Kinds of States

e Until now:

(S,80,—), S0€S8,— CSx(EU{}) X Exprgy x Acty x S

e From now on: (hierarchical) state machines

(S, kind, region, —, 1, annot)
where

e S D {top} is a finite set of states (as before),

o kind : S — {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}

is a function which labels states with their kind, (new)

. s
e region : S — 22 is a function which characterises the regions of a state,

N

e annot : (‘—>) — (EU{.}) x Expr, x Act»
provides an annotation for each transition.

(so is then redundant — replaced by proper state (!) of kind ‘init’.)

— 15 — 2016-01-14 — Shiersyn —

" (new)
e — isa set of transitions, (changed)

.]
o 1 : (=) T 2% x 25 is an incidence function, and (new)

(new)

From UML to Hierarchical State Machine: By Example

(S, kind, region, —, 1, annot)
example es kind region
simple state s st &
final state g fin /3
composite state
OR s <t {£s.52.5333
~
region
12
AND s Sé {;51;g‘:s,;SZlS;_;,
$s, S.;‘f}
submachine state (later)
pseudo-state 0® 3 ik /8

— 15 — 2016-01-14 — Shiersyn —

-~

(s,kind(s)) for short

From UML to Hierarchical State Machine: By Example

r - =

|- — = =

Lo tr[gd]/act

—_ -

]

R 4, annot

! R OO
|

T — =

e

S N — -~

... denotes (S, kind, region, —, 1, annot) =

— 15 — 2016-01-14 — Shiersyn —

(§ (3.0, (), (o b, Chopst) §

S, kind

f4pp, enp, snl,

beb> §59.5. 03

N\

I
|
|

p—
—_— -

9

region

ft), §Lw(§alis) &arGsie) i
N——

- (i
f{, 3 (lr,i/, at) , bo b dungdb 5)

annot

Well-Formedness: Regions

es kind

region C 25,8; C S

child C S

final state
pseudo-state
simple state

composite state
implicit top state

fin

st
st
top st

»w » »w »

init, ...

(5, ...

Final and pseudo states must not comprise regions.

States s € S with kind(s) = st may comprise regions.

Naming conventions can be defined based on regions:

e No region:

e One region:

— 15 — 2016-01-14 — Shiersyn —
[J

e Two or more regions:

simple state.
OR-state.
AND-state.

Well-Formedness Continued

D)o

Each state (except for top) must lie in exactly one region.

Note: The region function induces a child function.

0
0
0
S1U-~-
S

USh

0

si

Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

&

e Each non-empty region has exactly one initial pseudo-state and at least one
transition from there to a state of the region, i.e.

o for each s € S with region(s) = {51, ..

< Snkh

e for each 1 < i < m, there exists exactly one initial pseudo-state (s, init) € S; and
at least one transition ¢ €— with s} as source,

o Initial pseudo-states are not targets of transitions.

For simplicity:

(.7

\J

No

e The target of a transition with initial pseudo-state source in S; is (also) in S;.

e Transitions from initial pseudo-states have no trigger or guard,

i.e. t €= from s with kind(s) = st implies annot(t) = (., true, act).

o Final states are not sources of transitions.

DON'T!

— 15 — 2016-01-14 — Shiersyn —

DON'T!
AN
tr(gd]/act

— 15 — 2016-01-14 — Shiersyn —

— 15 — 2016-01-14 — main —

example

Plan example

1
entry/act]"
) do/act{°
simple state exit/ act
Ey/actp,

En/acts,

final state

composite state

OR

AND

pseudo-state
initial
(shallow) history
deep history

fork/join

junction, choice
entry point

exit point
terminate

submachine state

AN

®
®
K->

-

Composite states.
Initial pseudostate, final state.
Entry/do/exit actions, internal transitions.

History and other pseudostates, the rest.

Composite States

10/36

1136

Composite States

e In a sense, composite states are about
abbreviation, structuring, and avoiding redundancy.

e ldea: in Tron, for the Player's Statemachine,

instead of OQ‘S'HI"’
ingaens
n
fesige ’
' 4 et
write \

X/

resigned

resigned

— 15 — 2016-01-14 — Shierstm —

12/36

Composite States

and instead of

7/ fastN

n) F/

fE

W

fs

13/36

— 15 — 2016-01-14 — Shierstm —

Composite States: Blessing or Curse?

— 15 — 2016-01-14 — Shierstm —

Plan:

States:

plicit st attribute?

o what are legal state config-
urations?
Transitions:

what are legal / well-formed
transitions?

when is a legal transition en-
abled?

which effects do transitions
have?

o what is the type of the im- P

what may happen on E7?
what may happen on E, F7?
can E, G kill the object?

Syntax: Fork/Join

— 15 — 2016-01-14 — Shierstm —

14/36

o For simplicity, we consider transitions with (possibly) multiple sources and targets,

i.e.

e For instance,

Yo (=)= (29\0) x (2°\0)

translates to

—

¥

e Naming convention: ¥(t) = (source(t), target(t)).

(S, kind, region, {t1}, {t1 — ({s2, 53}, {85, 86})}, {t1 — (tr, gd, act)})
-

annot

15/36

State Configuration

e The type of (implicit attribute) st is from now on a set of states, i.e.
2(Sme) =25
o Aset S; C S is called (legal) state configurations if and only if

e top € 51, and

e with each state s € S; that has a non-empty region) # R € region(s),
exactly one (non pseudo-state) child of s is in Sy, i.e.

I{s € R| kind(s) € {st, fin}} N S1| = 1. P
fu, $o3 >

.

n,]Lsé,ws) \n.oro
. e fhe, i m o] 4

{n}
not. OK

16/36

— 15 — 2016-01-14 — Shierstm —

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:
e top <s, forall se€ S,

o s < ¢, forall s € child(s),

e transitive, reflexive, antisymmetric,

o s’ <sands”" <simplies s’ <s” ors” <5

2]
iy
A
=
/
&
NS
V)
o~

— 15 — 2016-01-14 — Shierstm —

17/36

Least Common Ancestor

o The least common ancestor is the function lca : 2° — S such that

e The states in Sy are (transitive) children of lca(S1), i.e.

lea(S1) < s, for alls € S1 C S,
Waidwa/
o lca(S1) is .m-m-ma—‘ i.e. if § < s forall s € 51, then § < lca(Sh)

e Note: lca(S) exists for all S; C S (last candidate: top).

|
IS
|
i
n
Orthogonal States
e Two states s1, 52 € S are called orthogonal, denoted s; L so, if and only if
o they are unordered, i.e. s1 £ s2 and s2 £ s1, and
o they live in different regions of an AND-state, i.e.
s, region(s) = {S1,..., 8.}, 1 <i# j <n:sy € child(S;) A sz € child(S;),
\L
4 s \/\(| s’ | A
1L I
ST i) [
é " : " : "
X (s8]
| | |
B
n

18/36

19/36

Consistent State Sets

— 15 — 2016-01-14 — Shierstm —

o A set of states S; C S is called consistent, denoted by | S,

if and only if for each s, s’ € S,
o s< s,
o s <s, or

o sl s

"1—;/ f/\\ < .//

d sf N o 2
\:\/\(~ /'-—’\J:'
X -~ /[|
|

Legal Transitions

— 15 — 2016-01-14 — Shierstm —

A hiearchical state-machine (S, kind, region, —, 1, annot) is called well-formed if

and only if for all transitions t €—,

e source and destination are consistent, i.e. | source(t) and | target(t),

e source (and destination) states are pairwise orthogonal, i.e.

o forall s,s" € source(t) (€ target(t)), s L s,

e the top state is neither source nor destination, i.e.

o top ¢ source(t) U source(t).

Recall: final states are not sources of transitions.

Example:

20/36

21/36

The Depth of States

o depth(top) =0,
o depth(s’) = depth(s) + 1, for all " € child(s)

Example:

— 15 — 2016-01-14 — Shierstm —

Enabledness in Hierarchical State-Machines

The scope (“set of possibly affected states”) of a transition ¢ is the least
common region (!) of

source(t) U target(t).

Two transitions t1,to are called consistent if and only if their scopes are
orthogonal (i.e. states in scopes pairwise orthogonal).

e The priority of transition ¢ is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s € source(t)}

A set of transitions T' C— is enabled in an object u if and only if

e T'is consistent,
§° T is maximal wrt. priority (all transitions in T' have thelsa-m-e{. highest priority),
o Haetr Seppe

o all transitions in 1" share the same trigger,
e for all t € T', the source states are active, i.e.
as before

source(t) C o(u)(st) (C 5).

o all guards are satisfied by a(u)lﬂ

— 15 — 2016-01-14 — Shierstm —

22/36

23/36

Transitions in Hierarchical State-Machines

o Let T be a set of transitions enabled in wu.
gnabled

(coms,Snd)
EEEEe—

e Then (o,¢) m

(o’ &) if
o o'(u)(st) consists of the target states of T,

i.e. for simple states the simple states themselves,
for composite states the initial states,

o o', €, cons, and Snd are the effect of firing each transition t € T
one by one, in any order, i.e. foreach t € T,

o the exit action transformer (— later) of all affected states, highest depth first,

e the transformer of ¢,

o the entry action transformer (— later) of all affected states, lowest depth first.

|
£
$ ~ adjust Rules (ii), (i), (v) accordingly.
|
q
h
Initial and Final States
|
G
T

24/36

25/36

Initial Pseudostate

— 15 — 2016-01-14 — Sinitfin —

[N§ /acty (5 .X
* tr[gd]/a,ct,g} ‘ ./acta 52 ‘/actz
= oan) [z

Principle:
e when entering a non-simple state,
e then go to the destination state of a transition with initial pseudo-state source,

e execute the action of the chosen initiation transition(s) between exit and entry
actions (— later).

Recall: For simplicity, we assume exactly one initiation transitions — could be more, choose
non-deterministically.

Special case: the region of top.
e If class C has a state-machine, then “create-C' transformer” is the concatenation of

o the transformer of the “constructor” of C' (here not introduced explicitly) and
e a transformer corresponding to one initiation transition of the top region.

26/36

Final States

— 15 — 2016-01-14 — Sinitfin —

D annot ®

o If (0,¢)
and all simple states in st € o(u)(st) are final, i.e. kind(s) = fin, then

Snd
(consu nd) (0'/,6/)

e stay unstable if there is a common parent of the simple states in o(u)(st)
which is source of a transition without trigger and satisfied guard,

e otherwise kill u.

~~ adjust Rules (i), (ii), (iii), and (v) accordingly.
Observation: u never “survives” reaching a state (s, fin) with s € child(top).

Observation:

VS.

27/36

References

— 15 — 2016-01-14 — main —

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal /2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal /2011-08-06.

— 15 — 2016-01-14 — main —

35/36

36/36

