Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines I

2016-01-14
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- step, RTC-step, divergence
- initial state, UML model semantics (so far)
- create, destroy actions

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- What is simple state, OR-state, AND-state?
- What is a legal state configuration?
- What is a legal transition?
- How is enabledness of transitions defined for hierarchical state machines?

- Content:

- Legal state configurations
- Legal transitions
- Rules (i) to (v) for hierarchical state machines

Hierarchical State-Machines

The Full Story

UML distinguishes the following kinds of states:

	example
```pseudo-state initial (shallow) history```	(H)
deep history	(H*)
fork/join	
junction, choice	$=0, \rightarrow 0$
entry point	$\bigcirc$
exit point	$\otimes$
terminate	$\times$
submachine state	$S: s$

## Representing All Kinds of States



NEW: $\left(\left\{s_{1}, s_{2}, s_{3}, s_{y}, s, t_{\phi}\right\},\left\{t_{1}, t_{2}\right\}\right.$,
 $\left\{t_{1}, H_{2}\left(\left\{s_{1}\right\},\left\{s_{2}, s_{3}\right\}\right), \ldots\right\}$ $\left\{t_{n} \mapsto\left(-,+\mu_{1}\right.\right.$, ship $\left.\left.), \cdots\right\}\right)$

## Representing All Kinds of States

- Until now:

$$
\left(S, s_{0}, \rightarrow\right), \quad s_{0} \in S, \rightarrow \subseteq S \times(\mathscr{E} \cup\{-\}) \times \operatorname{Expr}_{\mathscr{S}} \times \operatorname{Act}_{\mathscr{S}} \times S
$$

- From now on: (hierarchical) state machines

$$
(S, \text { kind }, \text { region }, \rightarrow, \psi, \text { annot })
$$

where

- $S \supseteq\{t o p\}$ is a finite set of states
- kind : $S \rightarrow$ \{st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term\} is a function which labels states with their kind,
- region : $S \rightarrow 2^{2^{S}}$ is a function which characterises the regions of a state,
- $\xrightarrow{r}$ is
- annot $:(\xrightarrow{( }) \rightarrow(\mathscr{E} \cup\{-\}) \times$ Exp $_{\mathscr{S}} \times$ Act $_{\mathscr{S}}$ provides an annotation for each transition.
(changed)
(new)
(as before),
(new)
( $s_{0}$ is then redundant - replaced by proper state (!) of kind 'init'.)

From UML to Hierarchical State Machine: By Example


From UML to Hierarchical State Machine: By Example

$\ldots$ denotes $(S$, kind, region, $\rightarrow, \psi$, annot $)=$

$$
\begin{aligned}
& (\underbrace{\left\{(q, i n t),(s, s),\left(p, f_{i n}\right),(t+p, s t)\right\}}_{S, k i n d} \\
& \underbrace{\{q \mapsto \theta, p \mapsto \rho, s \mapsto \sigma, \operatorname{top} H\{\{q, s, p\}\}}_{\text {region }}, \\
& \underbrace{\left\{t_{n}, t_{2}\right\}}_{\rightarrow}, \underbrace{\left\{t_{n} H(\{q\},\{s\}), t_{2} \mapsto(\{s\},\{p\})\right\}}_{\psi}, \\
& \underbrace{\left.\left\{t_{1} \mapsto(d, \phi d, a c t), t_{2}+\operatorname{dun} \omega t\right\}\right)}_{\text {cannot }}
\end{aligned}
$$

	$\in S$	kind	region $\subseteq 2^{S}, S_{i} \subseteq S$	child $\subseteq S$
final state	$s$	fin	$\emptyset$	$\emptyset$
pseudo-state	$s$	init, $\ldots$	$\emptyset$	$\emptyset$
simple state	$s$	$s t$	$\emptyset$	$\emptyset$
composite state	$s$	$s t$	$\left\{S_{1}, \ldots, S_{n}\right\}, n \geq 1$	$S_{1} \cup \cdots \cup S_{n}$
implicit top state	top	st	$\left\{S_{1}\right\}$	$S_{1}$

- Final and pseudo states must not comprise regions.
- States $s \in S$ with $\operatorname{kind}(s)=s t$ may comprise regions.

Naming conventions can be defined based on regions:

- No region: simple state.
- One region: OR-state.
- Two or more regions: AND-state.
- Each state (except for top) must lie in exactly one region.
- Note: The region function induces a child function.

- Note: Diagramming tools (like Rhapsody) can ensure well-formedness.


## Well-Formedness Continued



- Each non-empty region has exactly one initial pseudo-state and at least one transition from there to a state of the region, i.e.
- for each $s \in S$ with $\operatorname{region}(s)=\left\{S_{1}, \ldots, S_{n}\right\}$,
- for each $1 \leq i \leq n$, there exists exactly one initial pseudo-state ( $s_{1}^{i}$, init) $\in S_{i}$ and at least one transition $t \in \rightarrow$ with $s_{1}^{i}$ as source,
- Initial pseudo-states are not targets of transitions.


## For simplicity:

- The target of a transition with initial pseudo-state source in $S_{i}$ is (also) in $S_{i}$.
- Transitions from initial pseudo-states have no trigger or guard,
i.e. $t \in \rightarrow$ from $s$ with $\operatorname{kind}(s)=s t$ implies $\operatorname{annot}(t)=(-$, true, act $)$.
- Final states are not sources of transitions.


- Composite states.
- Initial pseudostate, final state.
- Entry/do/exit actions, internal transitions.
- History and other pseudostates, the rest.

Composite States

## Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of


12/36

## Composite States



Composite States: Blessing or Curse?


## Syntax: Fork/Join

- For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.

$$
\psi:(\rightarrow) \rightarrow\left(2^{S} \backslash \emptyset\right) \times\left(2^{S} \backslash \emptyset\right)
$$

- For instance,


$$
(S, \text { kind, region, } \underbrace{\left\{t_{1}\right\}}_{\rightarrow}, \underbrace{\left\{t_{1} \mapsto\left(\left\{s_{2}, s_{3}\right\},\left\{s_{5}, s_{6}\right\}\right)\right\}}_{\psi}, \underbrace{\left\{t_{1} \mapsto(\text { tr, gd, act })\right\}}_{\text {annot }})
$$

- Naming convention: $\psi(t)=(\operatorname{source}(t), \operatorname{target}(t))$.


## State Configuration

- The type of (implicit attribute) st is from now on a set of states, ie. $\mathscr{D}\left(S_{M_{C}}\right)=2^{S}$
- A set $S_{1} \subseteq S$ is called (legal) state configurations if and only if
- top $\in S_{1}$, and
- with each state $s \in S_{1}$ that has a nonempty region $\emptyset \neq R \in \operatorname{region}(s)$, exactly one (non pseudo-state) child of $s$ is in $S_{1}$, ie.

$$
\begin{aligned}
& \left|\{s \in R \mid \operatorname{kind}(s) \in\{s t, f i n\}\} \cap S_{1}\right|=1 . \\
& \{n, f o t\} \\
& \{\text { top, ingate, } n, \text { foot }\}
\end{aligned}
$$

$\{n, f o t, w\}$
not 0 K

- 15 - 2016-01-14 - Shierstm -
$\{n\}$
not ok


## A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- top $\leq s$, for all $s \in S$,
- $s \leq s^{\prime}$, for all $s^{\prime} \in \operatorname{child}(s)$,
- transitive, reflexive, antisymmetric,
- $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$ implies $s^{\prime} \leq s^{\prime \prime}$ or $s^{\prime \prime} \leq s^{\prime}$.



## Least Common Ancestor

- The least common ancestor is the function lca: $2^{S} \rightarrow S$ such that
- The states in $S_{1}$ are (transitive) children of $l c a\left(S_{1}\right)$, i.e.

$$
l c a\left(S_{1}\right) \leq s, \text { for all } s \in S_{1} \subseteq S,
$$

Maximal

- lca $\left(S_{1}\right)$ is inimat, i.e. if $\hat{s} \leq s$ for all $s \in S_{1}$, then $\hat{s} \leq l c a\left(S_{1}\right)$
- Note: lca $\left(S_{1}\right)$ exists for all $S_{1} \subseteq S$ (last candidate: top).



## Orthogonal States

- Two states $s_{1}, s_{2} \in S$ are called orthogonal, denoted $s_{1} \perp s_{2}$, if and only if
- they are unordered, i.e. $s_{1} \not \leq s_{2}$ and $s_{2} \not \leq s_{1}$, and
- they live in different regions of an AND-state, i.e.

$$
\exists s, \operatorname{region}(s)=\left\{S_{1}, \ldots, S_{n}\right\}, 1 \leq i \neq j \leq n: s_{1} \in \operatorname{child}\left(S_{i}\right) \wedge s_{2} \in \operatorname{child}\left(S_{j}\right),
$$



## Consistent State Sets

- A set of states $S_{1} \subseteq S$ is called consistent, denoted by $\downarrow S_{1}$, if and only if for each $s, s^{\prime} \in S_{1}$,
- $s \leq s^{\prime}$,
- $s^{\prime} \leq s$, or
- $s \perp s^{\prime}$.



## Legal Transitions

A hiearchical state-machine ( $S$, kind, region, $\rightarrow, \psi$, annot) is called well-formed if and only if for all transitions $t \in \rightarrow$,

- source and destination are consistent, i.e. $\downarrow \operatorname{source}(t)$ and $\downarrow \operatorname{target}(t)$,
- source (and destination) states are pairwise orthogonal, i.e.
- forall $s, s^{\prime} \in \operatorname{source}(t)(\in \operatorname{target}(t)), s \perp s^{\prime}$,
- the top state is neither source nor destination, i.e.
- top $\notin \operatorname{source}(t) \cup \operatorname{source}(t)$.

Recall: final states are not sources of transitions.

## Example:



- $\operatorname{depth}(t o p)=0$,
- $\operatorname{depth}\left(s^{\prime}\right)=\operatorname{depth}(s)+1$, for all $s^{\prime} \in \operatorname{child}(s)$

Example:


## Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition $t$ is the least common region (!) of

$$
\operatorname{source}(t) \cup \operatorname{target}(t) .
$$

- Two transitions $t_{1}, t_{2}$ are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
- The priority of transition $t$ is the depth of its innermost source state, i.e.

$$
\operatorname{prio}(t):=\max \{\operatorname{depth}(s) \mid s \in \operatorname{source}(t)\}
$$

- A set of transitions $T \subseteq \rightarrow$ is enabled in an object $u$ if and only if
- $T$ is consistent,
P. $T$ is maximal wrt. priority (all transitions in $T$ have the lsamel highest priority),
- all transitions in $T$ share the same trigger,
- for all $t \in T$, the source states are active, i.e.
$\operatorname{source}(t) \subseteq \sigma(u)(s t)(\subseteq S)$.
- all guards are satisfied by $\sigma(u)$
- Let $T$ be a set of transitions enabled in $u$.
- Then $(\sigma, \varepsilon) \xrightarrow{(\text { cons }, \text { Snd })}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$ if
- $\sigma^{\prime}(u)(s t)$ consists of the target states of $T$,
i.e. for simple states the simple states themselves, for composite states the initial states,
- $\sigma^{\prime}, \varepsilon^{\prime}$, cons, and $S n d$ are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
- the exit action transformer ( $\rightarrow$ later) of all affected states, highest depth first,
- the transformer of $t$,
- the entry action transformer ( $\rightarrow$ later) of all affected states, lowest depth first.
$\rightsquigarrow$ adjust Rules (ii), (iii), (v) accordingly.


## Initial Pseudostate



## Principle:

- when entering a non-simple state,
- then go to the destination state of a transition with initial pseudo-state source,
- execute the action of the chosen initiation transition(s) between exit and entry actions ( $\rightarrow$ later).

Recall: For simplicity, we assume exactly one initiation transitions - could be more, choose non-deterministically.

Special case: the region of top.

- If class $C$ has a state-machine, then "create- $C$ transformer" is the concatenation of
- the transformer of the "constructor" of $C$ (here not introduced explicitly) and
- a transformer corresponding to one initiation transition of the top region.


## Final States



- If $(\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)}\left(\sigma^{\prime}, \varepsilon^{\prime}\right)$
and all simple states in $s t \in \sigma(u)(s t)$ are final, i.e. $\operatorname{kind}(s)=$ fin, then
- stay unstable if there is a common parent of the simple states in $\sigma(u)(s t)$ which is source of a transition without trigger and satisfied guard,
- otherwise kill $u$.
$\rightsquigarrow$ adjust Rules (i), (ii), (iii), and (v) accordingly.

Observation: $u$ never "survives" reaching a state ( $s$, fin) with $s \in \operatorname{child}($ top $)$.

## Observation:


vs


## References

## References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

