Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines I

2016-01-14

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

The Full Story

4/36

Representing All Kinds of States

Contents & Goals

- Last Lecture:

- step, RTC-step, divergence
 initial state, UML model semantics (so far)
 create, destroy actions

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.

- What is simple state, OR-state, AND-state?
 What is a legal state configuration?
 What is a legal state configuration?
 Who is a legal state configuration?
 How is enabledness of transitions defined for hierarchical state machines?

Legal state configurations
 Legal transitions
 Rules (i) to (v) for hierarchical state machines

Hierarchical State-Machines

3/36

Representing All Kinds of States

Until now:

 $(S,s_0,\rightarrow),\quad s_0\in S, \rightarrow \ \subseteq S\times (\mathscr{E}\cup\{_\})\times \mathit{Expr}_{\mathscr{S}}\times \mathit{Act}_{\mathscr{S}}\times S$

• From now on: (hierarchical) state machines

* $region: S \rightarrow 2^{S^2}$ is a function which characterises the regions of a state, \rightarrow is a set of transitions, \rightarrow is $(2 + 3) + 2^{S} \times 2^{S}$ is an incidence function, and \rightarrow $(2 + 3) + 2^{S} \times 2^{S}$ is an incidence function, and $(2 + 3) + (2 \times 2^{S}) \times 2^{S} \times 2^{S}$ is an incidence function, and $(2 \times 3) + (2 \times 2^{S}) \times 2^{S} \times 2^{S$ • $S \supseteq \{top\}$ is a finite set of states • $kind:S \rightarrow \{st, ink, fin, shist, dhist, fork, join, junc, choi, ent, exi, term} is a function which labels states with their kind.$ $(S, kind, region, \rightarrow, \psi, annot)$ (new) (changed) (new) (new)

 $(s_0 \text{ is then redundant} - \text{replaced by proper state } (!) \text{ of kind } 'init'.)$

From UML to Hierarchical State Machine: By Example

	pseudo-state	submachine state	AND	OR	composite state	final state	simple state	3	(ω)
	•	(later)				@	s	example	$(\mathfrak{S}, \kappa ma, region, \rightarrow, \psi, annor)$
(s,kind)	P	1	5	и		40	n	$\in S$	$, \psi, an$
(s,kind(s)) for short	init		*	ĸ		f.	32	kind	nor)
	Ø		{ 8, si}, {s_x,s_i},	{{s, s, s, s ₃ }}		Ø	ø	region	

From UML to Hierarchical State Machine: By Example

... denotes $(S, kind, region, \rightarrow, \psi, annot) =$

- Well-Formedness Continued O

- For simplicity:

Final states are not sources of transitions. DON'T!

* Each non-empty region has exactly one initial pseudo-state and at least one transition from there to a state of the region, i.e. * for each $s \in S$ with region($s \in \{S_1, \dots, S_n\}$). * for each $1 \le S_n$, there exits exactly one initial pseudo-state $(s_1^i, init) \in S_n$ and at least one transition $t \in S_n$ with s_1^i as source. • Initial pseudo-states are not targets of transitions.

 \bullet Transitions from initial pseudo-states have no trigger or guard, i.e. $t \in \rightarrow$ from s with kind(s) = st implies annot(t) = (_, true, act). The target of a transition with initial pseudo-state source in S_i is (also) in S_i.

tr[gd]/act

Plan

Composite states.

- Initial pseudostate, final state.
 Entry/do/exit actions, internal transitions.
 History and other pseudostates, the rest.

10/36

Well-Formedness: Regions

implicit top state	composite state	simple state	pseudo-state	final state	
top	œ	s	s	s	$\in S$
st	3t	st	init,	fin	kind
$\{S_1\}$	$\{S_1,, S_n\}, n \ge 1$	0	0	0	$region \subseteq 2^S, S_i \subseteq S$
S_1	$S_1 \cup \cdots \cup S_n$	0	0	0	$child \subseteq S$

- Final and pseudo states must not comprise regions. States $s \in S$ with kind(s) = st may comprise regions. Naming conventions can be defined based on regions:
- No region: simple state.
 One region: OR-state.
 Two or more regions: AND-state.
 - simple state.
 OR-state.

- ullet Each state (except for top) must lie in exactly one region. E) o

Note: The region function induces a child function.
 Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

8/36

Composite States

11/36

Composite States

- In a sense, composite states are about abbreviation, structuring, and avoiding redundancy.
- Idea: in Tron, for the Player's Statemachine, instead of

and instead of Composite States AMD-state: slow F/F/

State Configuration

Syntax: Fork/Join

 \bullet For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.

 $\psi:(\rightarrow)\rightarrow(2^S\setminus\emptyset)\times(2^S\setminus\emptyset)$

- The type of (implicit attribute) st is from now on a set of states, i.e. $\mathcal{D}(S_{M_C}) = 2^S$
- A set $S_1 \subseteq S$ is called (legal) state configurations if and only if
- $\bullet \ top \in S_1, \ \text{and}$ $\bullet \ \ with each \ \text{state} \ s \in S_1 \ \text{that has a non-empty region} \ \emptyset \neq R \in region(s),$ exactly one (non pseudo-state) child of s is in S_1 , i.e.

{n, fac, w}

• Naming convention: $\psi(t) = (source(t), target(t))$.

15/36

 $(S,kind,region,\underbrace{\{t_1\},\{t_1\mapsto (\{s_2,s_3\},\{s_5,s_6\})\}}_{\psi},\underbrace{\{t_1\mapsto (tr,gd,act)\})}_{annot}$

16/36

13/36

Composite States: Blessing or Curse?

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $$\begin{split} & \quad top \leq s, \text{ for all } s \in S, \\ & \quad *s \leq s', \text{ for all } s' \in child(s), \\ & \quad * \text{ transitive, reflexive, antisymmetric,} \\ & \quad *s' \leq s \text{ and } s'' \leq s \text{ implies } s' \leq s' \text{ or } s'' \leq s'. \end{split}$$

17/36

Least Common Ancestor

- ullet The least common ancestor is the function $\mathit{lca}: 2^S \to S$ such that
- ullet The states in S_1 are (transitive) children of $laa(S_1)$, i.e.

 $lca(S_1) \le s$, for alls $\in S_1 \subseteq S$,

• $lca(S_1)$ is minimal, i.e. if $\hat{s} \leq s$ for all $s \in S_1$, then $\hat{s} \leq lca(S_1)$

• Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).

 s_1 82 s_3 $s_1^{\prime\prime}$ $s_2^{\prime\prime}$ $s_3^{\prime\prime}$

18/36

Orthogonal States

- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
- they are unordered, i.e. $s_1 \le s_2$ and $s_2 \le s_1$, and they live in different regions of an AND-state, i.e.

 $\exists s, region(s) = \{S_1, \ldots, S_n\}, 1 \leq i \neq j \leq n : s_1 \in child(S_i) \land s_2 \in child(S_j),$

19/36

The Depth of States

Legal Transitions

* source and destination are consistent, i.e. \downarrow source(t) and \downarrow target(t), * source (and destination) states are pairwise orthogonal, i.e.

• forall $s, s' \in source(t)$ ($\in target(t)$), $s \perp s'$,

A hiearchical state-machine $(S,kind,region,\rightarrow,\psi,annot)$ is called **well-formed** if and only if for all transitions $t\in\rightarrow$.

- $\begin{aligned} &\bullet \; depth(top) = 0, \\ &\bullet \; depth(s') = depth(s) + 1, \, \text{for all } s' \in child(s) \end{aligned}$

Example:

Recall: final states are not sources of transitions.

P

(a) (a)

21/36

3 0

 top ∉ source(t) ∪ source(t). the top state is neither source nor destination, i.e.

22/36

Enabledness in Hierarchical State-Machines

- The scope ("set of possibly affected states") of a transition t is the least common region (!) of $source(t) \cup target(t)$.
- Two transitions t₁, t₂ are called consistent if and only if their scopes are orthogonal (i.e. states in scopes pairwise orthogonal).
 The priority of transition t is the depth of its innermost source state, i.e.
- $prio(t) := \max\{depth(s) \mid s \in source(t)\}$
- A set of transitions T ⊆→ is enabled in an object u if and only if

 T is consistent,
 T is maximal wrt. priority (all transitions in T have the *sam*a bighest priority).
 all transitions in T share the same trigger,
 for all t ∈ T, the source states are active, i.e.

 $source(t) \subseteq \sigma(u)(st) \ (\subseteq S).$

ullet all guards are satisfied by $\sigma(u)$ [276]

23/36

Consistent State Sets

• A set of states $S_1\subseteq S$ is called consistent, denoted by $\downarrow S_1$, if and only if for each $s,s'\in S_1$, • $s\leq s'$, • $s'\leq s'$, or • $s'\leq s$, or • $s'\leq s$, or

20/36

Transitions in Hierarchical State-Machines

- Then $(\sigma, \varepsilon) \xrightarrow{(cons, Snd)} (\sigma', \varepsilon')$ if • Let T be a set of transitions enabled in u.
- $\sigma'(u)(s)$ consists of the target states of T, i.e. for simple states the simple states themselves, for composite states the initial states,
- σ' , ε' , cons, and Snd are the effect of firing each transition $t\in T$ one by one, in any order, i.e. for each $t\in T$,
- the exit action transformer (→ later) of all affected states, highest depth first,
 the transformer of t,
- \bullet the entry action transformer $(\rightarrow$ later) of all affected states, lowest depth first.
- \rightarrow adjust Rules (ii), (iii), (v) accordingly.

24/36

Initial and Final States

Initial Pseudostate

/act1 | 80 | tr|pd]/act | 81

| S2 | Jacks | S2.1 | S2.2 | S3 |

25/36

If class C has a state-machine, then "create-C transformer" is the concatenation of the transformer of the "constructor" of C (here not introduced explicity) and a transformer corresponding to one initiation transition of the top region.

26/36

Special case: the region of top.

when entering a non-simple state,
 then go to the destination state of a transition with initial pseudo-state source,
 execute the action of the chosen initiation transition(s) between exit and entry actions (~ later).

Principle:

Recall: For simplicity, we assume exactly one initiation transitions — could be more, choose non-deterministically.

Final States

annot

e If $(\sigma, \varepsilon) \xrightarrow[]{(cons, Snd)} (\sigma', \varepsilon')$ and all simple states in $st \in \sigma(u)(s)$ are final, i.e. sind(s) = fin, then e stay unstable if there is a common parent of the simple states in $\sigma(u)(s)$ which is source of a transition without trigger and satisfied guard.

References

References

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06. OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

Ş.

27/36

35/36

36/36

Observation: u never "survives" reaching a state (s, fin) with $s \in \mathit{child}(top)$.

 \leadsto adjust Rules (i), (ii), (iii), and (v) accordingly.