
–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 16: Hierarchical State Machines II

2016-01-19

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Contents & Goals
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
p
re
li
m

–

2/31

Last Lecture:

• Legal state configurations

• Legal transitions

• Rules (i) to (v) for hierarchical state machines

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• How do entry / exit actions work? What about do-actions?

• What is the effect of shallow / deep history pseudo-states?

• What about junction, choice, terminate, etc.?

• What is the idea of deferred events?

• How are passive reactive objects treated in Rhapsody’s UML semantics?

• What about methods?

• Content:

• Entry / exit / do actions, internal transitions

• Remaining pseudo-states; deferred events

• Passive reactive objects

• Behavioural features



Entry and Exit Actions

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

3/31



Entry/Do/Exit Actions
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
en

tr
ye
xi
t
–

4/31

s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .
En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act• In general, with each state
s ∈ S there is associated

• an entry, a do, and an exit
action (default: skip)

• a possibly empty set of
trigger/action pairs called internal transitions, (default: empty).

Note: ‘entry’, ‘do’, ‘exit’ are reserved names; E1, . . . , En ∈ E .

• Recall: each action is supposed to have a transformer; assume t
act

entry
1

, t
act

exit
1

, . . .

• Taking the transition above then amounts to applying

t
act

entry
2

◦ tact ◦ tactexit
1

instead of just
tact

 adjust Rules (ii), (iii), and (v) accordingly.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Internal Transitions
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
en

tr
ye
xi
t
–

5/31

s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .
En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• Taking an internal transition, e.g. on E1, only executes tactE1
.

• Intuition: The state is neither left nor entered, so: no exit, no entry action.

• Note: internal transitions also start a run-to-completion step.

 adjust Rules (i), (ii), and (v) accordingly.

Note: the standard seems not to clarify whether internal transitions have priority over
regular transitions with the same trigger at the same state.

Some code generators assume that internal transitions have priority!

westphal
Bleistift



Alternative View: Entry / Exit / Internal as Abbreviations
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
en

tr
ye
xi
t
–

6/31

s0

s1
entry/actentry

1

exit/actexit
1

E1/actE1

s2
entry/actentry

2

exit/actexit
2

tr0[gd0]/act0 tr1[gd1]/act1

tr2[gd2]/act2

Can be viewed as abbrevation for . . .

s0 s1 s2

• That is: Entry / Internal / Exit don’t add expressive power to Core State Machines.

If internal actions should have priority, s1 can be embedded into an OR-state.

• Abbreviation view may avoid confusion in context of hierarchical states.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Do Actions
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
en

tr
ye
xi
t
–

7/31

s1

entry/actentry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .
En/actEn

s2

entry/actentry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• Intuition: after entering a state, start its do-action.

• If the do-action terminates,

• then the state is considered completed (like final state),

• otherwise,

• if the state is left before termination, the do-action is stopped.

• Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

• Now, what is it exactly while the do action is executing...?



The Concept of History, and Other Pseudo-States

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

8/31



History and Deep History: By Example
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
h
is
t
–

9/31

susp

•
s0

act

H H∗

•
s1 s2

s3
sb

•
s4

s5

E/

B/

C/

D/

F/

Rs/
Rd/

A/

S/

Rs/
Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A,B,C, S,Rs?
s0, s1, s2, s3, susp, s3

• A,B,C, S,Rd?
s0, s1, s2, s3, susp, s3

• A,B,C,D,E, S,Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A,B,C,D,E, S,Rd?
s0, s1, s2, s3, s4, s5, susp, s5

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Junction and Choice
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
h
is
t
–

10/31

• Junction (“static conditional branch”): •
[gd 1

]/a
ct 1

[gd
2 ]/act

2

• Choice: (“dynamic conditional branch”)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Junction and Choice
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
h
is
t
–

10/31

• Junction (“static conditional branch”): •
[gd 1

]/a
ct 1

[gd
2 ]/act

2

• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid



Entry and Exit Point, Submachine State, Terminate
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
h
is
t
–

11/31

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Entry and Exit Point, Submachine State, Terminate
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
h
is
t
–

11/31

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level, than just
via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.

westphal
Bleistift



Are We Done?

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

12/31



The Full Story
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
h
ie
rs
yn

–

13/31

UML distinguishes the following kinds of states:

example

simple state

s1
entry/actentry

1

do/actdo
1

exit/actexit
1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′
1

s′
2

s′
3

example
pseudo-state
initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s



Deferred Events in State-Machines

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

14/31



Deferred Events: Idea
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
d
ef
er

–

15/31

UML state machines comprises the feature of deferred events.

The idea is as follows:

• Consider the following state machine:

s1 s2 s3
E/ F/

• Assume we’re stable in s1, and F is ready in the ether.

• In the framework of our course, F is discarded.

• But we may find it a pity to discard the poor event
and we may want to remember it for later processing,
e.g. in s2, in other words: defer it.

General options to satisfy such needs:

• Provide a pattern how to “program” this (use self-loops and helper attributes).

• Turn it into an original language concept. (← OMG’s choice)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Deferred Events: Syntax and Semantics
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
d
ef
er

–

16/31

• Syntactically,

• Each state has (in addition to the name) a set of deferred events.

• Default: the empty set.

• The semantics is a bit intricate, something like

• if Rule (i) (discard) would apply,

• but E is in the deferred set of the current state configuration,

• then stuff E into some “deferred events space” of the object,
(e.g. into the ether (= extend ε) or into the local state of the object (= extend σ))

• and turn attention to the next event.

• Not so obvious:

• Is there a priority between deferred and regular events?

• Is the order of deferred events preserved?

• ...

Fecher and Schönborn (2007), e.g., claim to provide semantics for the complete
Hierarchical State Machine language, including deferred events.



Active and Passive Objects

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

17/31



What about non-Active Objects?
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
a
ct
p
a
ss

–

18/31

Recall:

• We’re still working under the assumption that all classes in the class diagram (and thus
all objects) are active.

• That is, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.
→ steps of active objects can interleave.

But the world doesn’t consist of only active objects.

For instance, in the crossing controller from the exercises we could wish to have the
whole system live in one thread of control.

So we have to address questions like:

• Can we send events to a non-active object?

• And if so, when are these events processed?

• etc.

westphal
Bleistift



Active and Passive Objects: Nomenclature
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
a
ct
p
a
ss

–

19/31

Harel and Gery (1997) propose the following (orthogonal!) notions:

• A class (and thus the instances of this class) is either active or passive
as defined by the class diagram.

• An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

• A passive object doesn’t.

• A class is either reactive or non-reactive.

• A reactive class has a (non-trivial) state machine.

• A non-reactive one hasn’t.

Which combinations do we (not) understand yet?

active passive

reactive ✔ (∗)

non-reactive (✔) (✔)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Passive and Reactive / Rhapsody Style: Example
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
a
ct
p
a
ss

–

20/31

C1 C2 D
n

0..1

m 0..1

SMC1
:

•
s1 s2

E/n!F,m!G

SMC2
:

•
s1 s2 s3

F/

SMD:
•

s1 s2 s3
G/

σ :
u1 : C1 u2 : C2 u3 : D e : En

m

ε : (u1, E1)

Wanted:

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Passive Reactive / Rhapsody Style
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
a
ct
p
a
ss

–

21/31

• In each class, add (implicit) link itsAct and use it to make each object u
know the active object ua which is responsible for dispatching events to u.

If u is an instance of an active class, then ua = u.

C1 C2 D
n

0..1

m 0..1

itsAct

1
itsAct

1

itsAct

1



Passive Reactive / Rhapsody Style
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
a
ct
p
a
ss

–

21/31

• In each class, add (implicit) link itsAct and use it to make each object u
know the active object ua which is responsible for dispatching events to u.

If u is an instance of an active class, then ua = u.

• Equip all signals with (implicit) association dest and use it to point to the destination object.

For each signal F , have a version FC with an association dest : C0,1, C ∈ C (no inheritance yet).

C1 C2 D
n

0..1

m 0..1

itsAct

1
itsAct

1

itsAct

1

〈〈signal〉〉

FC1

〈〈signal〉〉

FC2

〈〈signal〉〉

FD

dest
1

dest
1

dest
1



Passive Reactive / Rhapsody Style
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
a
ct
p
a
ss

–

21/31

• In each class, add (implicit) link itsAct and use it to make each object u
know the active object ua which is responsible for dispatching events to u.

If u is an instance of an active class, then ua = u.

• Equip all signals with (implicit) association dest and use it to point to the destination object.

For each signal F , have a version FC with an association dest : C0,1, C ∈ C (no inheritance yet).

u1 : C1 ud : C2 ua : D
n

itsAct
itsAct

itsAct

Sending an event:

• n!F in u1 : C1 becomes:

• Create an instance ue of FC2
and set ue’s

dest to ud := σ(u1)(n).

• Send to ua := σ(σ(u1)(n))(itsAct),
i.e., ε′ = ε⊕ (ua, ue).

Dispatching an event:

• Observation: the ether only has events for
active objects.

• Say ue is ready in the ether for ua.

• Then ua asks σ(ue)(dest) = ud to process
ue — and waits until completion of corre-
sponding RTC.

• ud may in particular discard event.

westphal
Bleistift

westphal
Bleistift



Discussion

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

22/31



Semantic Variation Points
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
se
m
va
r
–

23/31

Pessimistic view: They are legion...

• For instance,

• allow absence of initial pseudo-states
object may then “be” in enclosing state without being in any substate;
or assume one of the children states non-deterministically

• (implicitly) enforce determinism, e.g.
by considering the order in which things have been added to the CASE tool’s repository,
or some graphical order (left to right, top to bottom)

• allow true concurrency

• etc. etc.

Exercise: Search the standard for “semantical variation point”.

Optimistic view: tools exist with complete and consistent code generation.

• Crane and Dingel (2007), e.g., provide an in-depth comparison of Statemate, UML, and
Rhapsody state machines — the bottom line is:

• the intersection is not empty
(i.e. there are pictures that mean the same thing to all three communities)

• none is the subset of another
(i.e. for each pair of communities exist pictures meaning different things)



And What About Methods?

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

24/31



And What About Methods?
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
m
et
h
o
d
s
–

25/31

• In the current setting, the (local) state of objects is only modified
by actions of transitions, which we abstract to transformers.

• In general, there are also methods.

• UML follows an approach to separate

• the interface declaration from

• the implementation.

In C++-lingo: distinguish declaration and definition of method.

• In UML, the former is called behavioural
feature and can (roughly) be

C

ξ1 f(T1,1, . . . , T1,n1
) : T1 P1

ξ2 F (T2,1, . . . , T2,n2
) : T2 P2

〈〈signal〉〉 E

• a call interface f(T11
, . . . , Tn1

) : T1

• a signal name E

Note: The signal list can be seen as redundant (can be looked up in the state machine) of
the class. But: certainly useful for documentation (or sanity check).



Behavioural Features
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
m
et
h
o
d
s
–

26/31

C

ξ1 f(T1,1, . . . , T1,n1
) : T1 P1

ξ2 F (T2,1, . . . , T2,n2
) : T2 P2

〈〈signal〉〉 E

Semantics:

• The implementation of a behavioural feature can be provided by:

• An operation.

In our setting, we simply assume a transformer like Tf .

It is then, e.g. clear how to admit method calls as actions on transitions: function composition
of transformers (clear but tedious: non-termination).

In a setting with Java as action language: operation is a method body.

• The class’ state-machine (“triggered operation”).

• Calling F with n2 parameters for a stable instance of C
creates an auxiliary event F and dispatches it (bypassing the ether).

• Transition actions may fill in the return value.

• On completion of the RTC step, the call returns.

• For a non-stable instance, the caller blocks until stability is reached again.



Behavioural Features: Visibility and Properties
–
1
6
–
2
0
1
6
-0
1
-1
9
–
S
m
et
h
o
d
s
–

27/31

C

ξ1 f(T1,1, . . . , T1,n1
) : T1 P1

ξ2 F (T2,1, . . . , T2,n2
) : T2 P2

〈〈signal〉〉 E

• Visibility:

• Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

• Useful properties:

• concurrency

• concurrent — is thread safe

• guarded — some mechanism ensures/should ensure mutual exclusion

• sequential — is not thread safe, users have to ensure mutual exclusion

• isQuery — doesn’t modify the state space (thus thread safe)

• For simplicity, we leave the notion of steps untouched, we construct our semantics around
state machines. Yet we could explain pre/post in OCL (if we wanted to).



References

–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

30/31



References
–
1
6
–
2
0
1
6
-0
1
-1
9
–
m
a
in

–

31/31

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models
are created equal. Software and Systems Modeling, 6(4):415–435.

Fecher, H. and Schönborn, J. (2007). UML 2.0 state machines: Complete formal semantics via
core state machines. In Brim, L., Haverkort, B. R., Leucker, M., and van de Pol, J., editors,
FMICS/PDMC, volume 4346 of LNCS, pages 244–260. Springer.

Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer,
30(7):31–42.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.


	Contents & Goals
	Entry and Exit Actions
	Entry/Do/Exit Actions
	Internal Transitions
	Alternative View: Entry / Exit / Internal as Abbreviations
	Do Actions

	The Concept of History, and Other Pseudo-States
	History and Deep History: By Example
	Junction and Choice
	Entry and Exit Point, Submachine State, Terminate

	Are We Done?
	The Full Story

	Deferred Events in State-Machines
	Deferred Events: Idea
	Deferred Events: Syntax and Semantics

	Active and Passive Objects
	What about non-Active Objects?
	Active and Passive Objects: Nomenclature
	Passive and Reactive / Rhapsody Style: Example
	Passive Reactive / Rhapsody Style

	Discussion
	Semantic Variation Points

	And What About Methods?
	And What About Methods?
	Behavioural Features
	Behavioural Features: Visibility and Properties

	A Closer Look to Rhapsody Code Generation
	

	References
	References




