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Last Lecture:
e Hierarchical state machines: the rest
o Deferred events

e Passive reactive objects

This Lecture:

e Educational Objectives: Capabilities for following tasks/questions.
e What are constructive and reflective descriptions of behaviour?
o What are UML Interactions?
e What is the abstract syntax of this LSC?
e How is the semantics of LSCs constructed?

o What is a cut, fired-set, etc.?

o Content:
e Rhapsody code generation
e Interactions: Live Sequence Charts
o LSC syntax

e Towards semantics
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A Closer Look to Rhapsody Code Generation
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Reflective Descriptions of Behaviour

Requirements
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Recall:

e The semantics of the UML model M = (¢ 2, %4 ,02) is the transition system

(S, —, So) constructed according to discard/dispatch/continue/etc.-rules.

e The computations of M, denoted by [M]], are the computations of (S, —, So).

A requirement 1 is a property of computations;
something which is either satisfied or not satisfied by a computation

(conso,Sndo)
_—

(o1,01) <, e M),

™ = (00,60)
ul u2

denoted by m =19 and 7 (£ 9, resp.
We write M |= o if and only if Vr € [M] e = 9.

Simplest case: OCL constraint viewed as invariant.

But how to formalise

“if a user enters 50 cent and then (later) presses the water button (while there
is water in stock), then (even later) the vending machine will dispense water”?



Constructive vs. Reflective Descriptions

Harel (1997) proposes to distinguish constructive and reflective descriptions:

e “A language is constructive if it contributes to the dynamic semantics of the model.
That is, its constructs contain information needed in executing the model or in translating
it into executable code.”

A constructive description tells how things are computed
(which can then be desired or undesired).

o "Other languages are reflective or assertive, and can be used by the system modeler to
capture parts of the thinking that go into building the model — behavior included —, to
derive and present views of the model, statically or during execution, or to set constraints
on behavior in preparation for verification.”

A reflective description tells what shall or shall not be computed.
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Interactions as Reflective Description
o In UML, reflective (temporal) descriptions are subsumed by interactions.
A UML model M = (62, %#,0%,.7) has a set of interactions .#.
e An interaction Z € .# can be (OMG claim: equivalently) diagrammed as

e communication diagram (formerly known as collaboration diagram),

e timing diagram, or

e sequence diagram.

Lifeline State or condition DurationConstraint
Figure 14.30 - Compact Lifeline with States (OMG, 2007, 522) - ﬁ/‘ Unlock
Figure 1427 - Communication diagr (OMG, 515) Figure 14.26 - Sequence Diagram with time and timing concepts  (OMG, 2007, 513)
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Interactions as Reflective Description

o In UML, reflective (temporal) descriptions are subsumed by interactions.

A UML model M = (¢2,%#,0%,.7) has a set of interactions .#.
e An interaction Z € .# can be (OMG claim: equivalently) diagrammed as

e communication diagram (formerly known as collaboration diagram),

e timing diagram, or
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e sequence diagram. .
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Why Sequence Diagrams?
Most Prominent: Sequence Diagrams — with long history:
o Message Sequence Charts, standardized by the ITU in different versions,
often accused to lack a formal semantics.
e Sequence Diagrams of UML 1.x
Most severe drawbacks of these formalisms:
e unclear interpretation:
example scenario or invariant?
e unclear activation:
what triggers the requirement? ‘ User ‘ ‘ CoinValidator ‘ ‘ ChoicePanel ‘ ‘ Dispenser
e unclear progress requirement: Z
must all messages be observed? g\pwwﬁ
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Thus: Live Sequence Charts

e SDs of UML 2.x address some issues,
yet the standard exhibits unclarities and even contradictions Harel and Maoz
(2007); Storrle (2003)

o For the lecture, we consider Live Sequence Charts (LSCs) Damm and Harel
(2001); Klose (2003); Harel and Marelly (2003),
who have a common fragment with UML 2.x SDs Harel and Maoz (2007)

e Modelling guideline: stick to that fragment.

LSC:  buy water
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Live Sequence Charts — Syntax
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LSC Body: Abstract Syntax
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Let © = {hot, cold}. An LSC body is a tuple

LSC Body: Abstract Syntax

(I, (%, X),~, %, Msg, Cond, Loclnv)

I is a finite set of instance lines,

(&, X) is a finite, non-empty,

partially ordered set of locations;

each [ € .Z is associated with a temperature
6(1) € © and an instance line 4; € I,

~C % x £ is an equivalence relation
on locations, the simultaneity relation,
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Let © = {hot, cold}. An LSC body is a tuple

(I, (%, X),~, %, Msg, Cond, Loclnv)

I is a finite set of instance lines,

(&, X) is a finite, non-empty,

partially ordered set of locations;

each [ € .Z is associated with a temperature
6(1) € © and an instance line i; € I,

i’feﬂo, by, 1 G, b0, -5

~C % x £ is an equivalence relation

on locations, the simultaneity relation, ?,'04 U2y,
S =(7,%,V,atr,&) is a signature, 4058,
Msg C .Z x & x .Z is a set of asynchronous
messages with (1,b,1') € Msg only if I < ’, _
. instantaneous messages — {) ; (,‘" /4' (4"),"')}

could be mapped to method/operation calls.

Cond C (2 \ @) x Expr., x © is a set of conditions .
where Ezpr ., are OCL expressions over W = I U {self } W-. { ({en‘s >3 Lo{) f
with (L, expr,6) € Cond only if I ~ I’ for all 1,1’ € L, A ‘

Loclnv C & X {o,e} X Ezpr, x © x £ x {o, e}
is a set of local invariants, LD‘-L“’ ={ (e'", 0,v=0, e, g, .),--j
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Well-Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

e For each location [ € .Z, if [ is the location of

a condition, i.e. 3(L, expr,0) € Cond : L € L, or

a local invariant, i.e. 3 (11,141, expr,0,ls,15) € Loclnv : [ € {Iy,12}, or
there is a location I’ equivalent to [, i.e. [ ~ I’, which is the location of

e an instance head, i.e. I’ is minimal wrt. <, or

a message, i.e.

3(ll,b,l2) S Msg 1l e {ll,lg}.

|
4 Note: if messages in a chart are cyclic, then there doesn't exist a partial order
~ (so such charts don’t even have an abstract syntax).
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