— 17 — 2016-01-21 — main —

Software Design, Modelling and Analysis in UML

Lecture 17: Live Sequence Charts I

2016-01-21

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Contents & Goals

— 17 — 2016-01-21 — Sprelim —

Last Lecture:
e Hierarchical state machines: the rest
o Deferred events

e Passive reactive objects

This Lecture:

e Educational Objectives: Capabilities for following tasks/questions.
e What are constructive and reflective descriptions of behaviour?
o What are UML Interactions?
e What is the abstract syntax of this LSC?
e How is the semantics of LSCs constructed?

o What is a cut, fired-set, etc.?

o Content:
e Rhapsody code generation
e Interactions: Live Sequence Charts
o LSC syntax

e Towards semantics

— 17 — 2016-01-21 — main —

— 17 — 2016-01-21 — main —

A Closer Look to Rhapsody Code Generation

-
D] [P COMPILER

You are here.

i 5/45
Course Map
é N
CD, SM p e OCL CD, 8D s
e
7 =(J,%,V,atr), SM expr <, 8D
i o 5,
M= (2%,Ay,—su) = (Qsp; 90, Aw,—sp, Fsp)
(4 X
'L}i i‘«
m = (00,€0) M) (01,€1) - - <> wr = ((03, cons;, Snd;)) ;e
wﬂ
G=(N,E,f)
5 S
E oD

6/45

— 17 — 2016-01-21 — main —

Reflective Descriptions of Behaviour

Requirements

— 17 — 2016-01-21 — Sreflective —

Recall:

e The semantics of the UML model M = (¢ 2, %4 ,02) is the transition system

(S, —, So) constructed according to discard/dispatch/continue/etc.-rules.

e The computations of M, denoted by [M]], are the computations of (S, —, So).

A requirement 1 is a property of computations;
something which is either satisfied or not satisfied by a computation

(conso,Sndo)
_—

(o1,01) <, e M),

™ = (00,60)
ul u2

denoted by m =19 and 7 (£ 9, resp.
We write M |= o if and only if Vr € [M] e = 9.

Simplest case: OCL constraint viewed as invariant.

But how to formalise

“if a user enters 50 cent and then (later) presses the water button (while there
is water in stock), then (even later) the vending machine will dispense water”?

Constructive vs. Reflective Descriptions

Harel (1997) proposes to distinguish constructive and reflective descriptions:

e “A language is constructive if it contributes to the dynamic semantics of the model.
That is, its constructs contain information needed in executing the model or in translating
it into executable code.”

A constructive description tells how things are computed
(which can then be desired or undesired).

o "Other languages are reflective or assertive, and can be used by the system modeler to
capture parts of the thinking that go into building the model — behavior included —, to
derive and present views of the model, statically or during execution, or to set constraints
on behavior in preparation for verification.”

A reflective description tells what shall or shall not be computed.

|
2
< Note: No sharp boundaries! (Would be too easy.)
(%]
|
&
g
o
IS
N
=
| 9/45
Interactions as Reflective Description
o In UML, reflective (temporal) descriptions are subsumed by interactions.
A UML model M = (62, %#,0%,.7) has a set of interactions .#.
e An interaction Z € .# can be (OMG claim: equivalently) diagrammed as

e communication diagram (formerly known as collaboration diagram),

e timing diagram, or

e sequence diagram.

Lifeline State or condition DurationConstraint
Figure 14.30 - Compact Lifeline with States (OMG, 2007, 522) - ﬁ/‘ Unlock
Figure 1427 - Communication diagr (OMG, 515) Figure 14.26 - Sequence Diagram with time and timing concepts (OMG, 2007, 513)

— 17 — 2016-01-21 — Sinteract —

Duration Obsen

10/45

Interactions as Reflective Description

o In UML, reflective (temporal) descriptions are subsumed by interactions.

A UML model M = (¢2,%#,0%,.7) has a set of interactions .#.
e An interaction Z € .# can be (OMG claim: equivalently) diagrammed as

e communication diagram (formerly known as collaboration diagram),

e timing diagram, or

11/45

e sequence diagram. .
Lifeline
o el sd UserAccepted
sd
— i e [[=] []
s U e
Fiqure 14.30 - Co ‘m>$ /"K‘7 Unlock
1 Fioure 1427 communication iagram (OMG, 2007, 515) ‘equence Diagram with time and timing concepts (OMG, 2007, 513)
2
i/%
|
g
S o Figure 14.28 - Interaction Level 3rie , 518)
o
N
| 10/45
Why Sequence Diagrams?
Most Prominent: Sequence Diagrams — with long history:
o Message Sequence Charts, standardized by the ITU in different versions,
often accused to lack a formal semantics.
e Sequence Diagrams of UML 1.x
Most severe drawbacks of these formalisms:
e unclear interpretation:
example scenario or invariant?
e unclear activation:
what triggers the requirement? ‘ User ‘ ‘ CoinValidator ‘ ‘ ChoicePanel ‘ ‘ Dispenser
e unclear progress requirement: Z
must all messages be observed? g\pwwﬁ
|
§ e conditions merely comments water-in-stock
b 7/
= 7/
‘e no means to express 2 WATER
& forbidden scenarios 7 o>
3 7]
g /
o
N
=
|

Thus: Live Sequence Charts

e SDs of UML 2.x address some issues,
yet the standard exhibits unclarities and even contradictions Harel and Maoz
(2007); Storrle (2003)

o For the lecture, we consider Live Sequence Charts (LSCs) Damm and Harel
(2001); Klose (2003); Harel and Marelly (2003),
who have a common fragment with UML 2.x SDs Harel and Maoz (2007)

e Modelling guideline: stick to that fragment.

LSC: buy water
AC: true .
(-’ AM: _invariant I: stfict |
. M / \
F’C /’ ‘ User CoinValidator ‘ ‘ ChoicePanel ‘ ‘ Dispenser ‘ \\
. . / 7 T T T \
'F / 50 | I ! \
/ |
‘ /\ 2 ‘ | } —=(C50!'v E1!V pSOFT!
3 \ z PWATER | | V pTEA!V pFILLUP!)
£ \ water _in_stock | /
%) \\ ! /
: 7
a W o ; dWATE’I{
bt ‘,‘(ﬁ(u\ 7 ! —(dSoft! v dTEA!)
g 7 o ;
) k |
Y /)
i
"\ w“"\" C\“ 5 | 1
I
Live Sequence Charts — Syntax
|
c
T
£
I
—
a
=)
©
=
o
N
|
~
=
|

12/45

13/45

LSC Body: Abstract Syntax

— 17 — 2016-01-21 — Slscasyn —

Let © = {hot, cold}. An LSC body is a tuple

LSC Body: Abstract Syntax

(I, (%, X),~, %, Msg, Cond, Loclnv)

I is a finite set of instance lines,

(&, X) is a finite, non-empty,

partially ordered set of locations;

each [€ .Z is associated with a temperature
6(1) € © and an instance line 4; € I,

~C % x £ is an equivalence relation
on locations, the simultaneity relation,

14/45

— 17 — 2016-01-21 — Slscasyn —

Let © = {hot, cold}. An LSC body is a tuple

(I, (%, X),~, %, Msg, Cond, Loclnv)

I is a finite set of instance lines,

(&, X) is a finite, non-empty,

partially ordered set of locations;

each [€ .Z is associated with a temperature
6(1) € © and an instance line i; € I,

i’feﬂo, by, 1 G, b0, -5

~C % x £ is an equivalence relation

on locations, the simultaneity relation, ?,'04 U2y,
S =(7,%,V,atr,&) is a signature, 4058,
Msg C .Z x & x .Z is a set of asynchronous
messages with (1,b,1') € Msg only if I < ’, _
. instantaneous messages — {) ; (,‘" /4' (4"),"')}

could be mapped to method/operation calls.

Cond C (2 \ @) x Expr., x © is a set of conditions .
where Ezpr ., are OCL expressions over W = I U {self } W-. { ({en‘s >3 Lo{) f
with (L, expr,6) € Cond only if I ~ I’ for all 1,1’ € L, A ‘

Loclnv C & X {o,e} X Ezpr, x © x £ x {o, e}
is a set of local invariants, LD‘-L“’ ={ (e'", 0,v=0, e, g, .),--j
14/45

Well-Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

e For each location [€ .Z, if [is the location of

a condition, i.e. 3(L, expr,0) € Cond : L € L, or

a local invariant, i.e. 3 (11,141, expr,0,ls,15) € Loclnv : [€ {Iy,12}, or
there is a location I’ equivalent to [, i.e. [~ I’, which is the location of

e an instance head, i.e. I’ is minimal wrt. <, or

a message, i.e.

3(ll,b,l2) S Msg 1l e {ll,lg}.

|
4 Note: if messages in a chart are cyclic, then there doesn't exist a partial order
~ (so such charts don’t even have an abstract syntax).
I
|
References
I
g
|
|
|

15/45

44 /45

References

Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal
Methods in System Design, 19(1):45-80.

Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg, O., editor, CAV,
volume 1254 of LNCS, pages 226-231. Springer-Verlag.

Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence
diagrams. Software and System Modeling (SoSyM). To appear. (Early version in SCESM'06,

2006, pp. 13-20).

Harel, D. and Marelly, R. (2003). Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag.

Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication
Behavior. PhD thesis, Carl von Ossietzky Universitat Oldenburg.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report
i formal/07-11-02.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
! formal /2011-08-05.

21 — main

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal /2011-08-06.
45/45

- 17 - 2016-01

~ TP NP

