
–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 18: Live Sequence Charts II

2016-01-28

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
p
re
li
m

–

2/45

Last Lecture:

• Rhapsody code generation

• Interactions: Live Sequence Charts

• LSC syntax

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• How is the semantics of LSCs constructed?

• What is a cut, fired-set, etc.?

• Construct the TBA for this LSC.

• Give one example which (non-)trivially satisfies this LSC.

• Content:

• Symbolic Automata

• Firedset, Cut

• Automaton construction

• Transition annotations

Live Sequence Charts — Syntax

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

3/45

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

4/45

LSC Body: Abstract Syntax

–
1
7
–
2
0
1
6
-0
1
-2
1
–
S
ls
ca
sy
n
–

14/45

: C1 : C2

x > 3

: C3

A

B C

D
E

v = 0

Let Θ = {hot, cold}. An LSC body is a tuple

(I, (L ,�),∼,S ,Msg,Cond, LocInv)

• I is a finite set of instance lines,

• (L ,�) is a finite, non-empty,
partially ordered set of locations;
each l ∈ L is associated with a temperature
θ(l) ∈ Θ and an instance line il ∈ I,

• ∼⊆ L × L is an equivalence relation

on locations, the simultaneity relation,

• S = (T,C, V, atr , E) is a signature,

• Msg ⊆ L × E × L is a set of asynchronous
messages with (l, b, l′) ∈ Msg only if l � l′,
Not: instantaneous messages —
could be mapped to method/operation calls.

• Cond ⊆ (2L \ ∅)× Expr
S

×Θ is a set of conditions
where ExprS are OCL expressions over W = I ∪ {self }
with (L, expr , θ) ∈ Cond only if l ∼ l′ for all l, l′ ∈ L,

• LocInv ⊆ L × {◦, •} × ExprS ×Θ× L × {◦, •}
is a set of local invariants,

Well-Formedness

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
ls
cw

el
lf
o
rm

–

5/45

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

• For each location l ∈ L , if l is the location of

• a condition, i.e. ∃ (L, expr , θ) ∈ Cond : l ∈ L, or

• a local invariant, i.e. ∃ (l1, i1, expr , θ, l2, i2) ∈ LocInv : l ∈ {l1, l2}, or

then there is a location l′ equivalent to l, i.e. l ∼ l′, which is the location of

• an instance head, i.e. l′ is minimal wrt. �, or

• a message, i.e.

∃ (l1, b, l2) ∈ Msg : l ∈ {l1, l2}.

Note: if messages in a chart are cyclic, then there doesn’t exist a partial order
(so such charts don’t even have an abstract syntax).

Live Sequence Charts — Semantics

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

6/45

TBA-based Semantics of LSCs

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
ls
cp
re
se
m

–

7/45

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✔

✘

✘✔

✔

✔

✔

✔

Plan:

• Given an LSC L with body

(I, (L ,�),∼,S ,Msg,Cond, LocInv),

• construct a TBA BL, and

• define language L(L) of L in terms of L(BL),

in particular taking activation condition and activation mode into account.

• Then M |= L (universal) if and only if L(M) ⊆ L(L).

And M |= L (existential) if and only if L(M) ∩ L(L) 6= ∅.

Excursion: Büchi Automata

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

8/45

From Finite Automata to Symbolic Büchi Automata

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
tb
a
–

9/45

q1 q2

0

1

A: Σ = {0, 1}

q1 q2

0

1

B: Σ = {0, 1}

q1 q2

0

1

1

0

B′: Σ = {0, 1}

q1 q2

even(x)

odd(x)

Asym : Σ = ({x} → N)

q1 q2

even(x)

odd(x)

Bsym : Σ = ({x} → N)

Büchi

infinite words

symbolic

symbolic

Büchi

infinite words

Symbolic Büchi Automata

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
tb
a
–

10/45

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

B = (ExprB(X), X,Q, qini ,→, QF)

where

• X is a set of logical variables,

• ExprB(X) is a set of Boolean expressions over X,

• Q is a finite set of states,

• qini ∈ Q is the initial state,

• → ⊆ Q × ExprB(X) × Q is the transition relation. Transitions (q, ψ, q′)
from q to q′ are labelled with an expression ψ ∈ ExprB(X).

• QF ⊆ Q is the set of fair (or accepting) states.

Word

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
tb
a
–

11/45

Definition. Let X be a set of logical variables and let ExprB(X) be a
set of Boolean expressions over X.

A set (Σ, · |=· ·) is called an alphabet for ExprB(X) if and only if

• for each σ ∈ Σ,

• for each expression expr ∈ ExprB, and

• for each valuation β : X → D(X) of logical variables to domain D(X),

either σ |=β expr or σ 6|=β expr .

An infinite sequence

w = (σi)i∈N0
∈ Σω

over (Σ, · |=· ·) is called word for ExprB(X).

Run of TBA over Word

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
tb
a
–

12/45

Definition. Let B = (ExprB(X), X,Q, qini ,→, QF) be a TBA and

w = σ1, σ2, σ3, . . .

a word for ExprB(X). An infinite sequence

̺ = q0, q1, q2, . . . ∈ Qω

is called run of B over w under valuation β : X → D(X) if and only if

• q0 = qini ,

• for each i ∈ N0 there is a transition (qi, ψi, qi+1) ∈→ such that σi |=β ψi.

Example: q1 q2 q1

even(x)

odd(x)

even(x)

odd(x)

Bsym : Σ = ({x} → N)

The Language of a TBA

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
tb
a
–

13/45

Definition.

We say TBA B = (ExprB(X), X,Q, qini ,→, QF) accepts the word
w = (σi)i∈N0

∈ (ExprB → B)ω if and only if B has a run

̺ = (qi)i∈N0

over w such that fair (or accepting) states are visited infinitely often by
̺, i.e., such that

∀ i ∈ N0 ∃ j > i : qj ∈ QF .

We call the set L(B) ⊆ (ExprB → B)ω of words that are accepted by B
the language of B.

Language of UML Model

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

14/45

Words over Signature

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
m
o
d
el
la
n
g
–

15/45

Definition. Let S = (T,C, V, atr , E) be a signature and D a structure
of S . A word over S and D is an infinite sequence

(σi, ui, consi, Snd i)i∈N0
∈ ΣD

S × D(C)× 2D(E) × 2(D(E) ∪̇ {∗,+})×D(C)

The Language of a Model

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
m
o
d
el
la
n
g
–

16/45

Recall: A UML model M = (C D ,SM ,OD) and a structure D denote a set JMK
of (initial and consecutive) computations of the form

(σ0, ε0)
a0−→ (σ1, ε1)

a1−→ (σ2, ε2)
a2−→ . . . where

ai = (cons i, Snd i, ui) ∈ 2D(E) × 2(D(E) ∪̇ {∗,+})×D(C) × D(C)
︸ ︷︷ ︸

=:Ã

.

For the connection between models and interactions, we disregard the configuration
of the ether, and define as follows:

Definition. Let M = (CD ,SM ,OD) be a UML model and D a structure.
Then

L(M) := {(σi, ui, consi,Snd i)i∈N0
∈ (ΣD

S × Ã)ω |

∃ (εi)i∈N0
: (σ0, ε0)

(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1) · · · ∈ JMK}

is the language of M.

Signal and Attribute Expressions

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
m
o
d
el
la
n
g
–

17/45

• Let S = (T,C, V, atr , E) be a signature and X a set of logical variables,

• The signal and attribute expressions ExprS (E , X) are defined by the grammar:

ψ ::= true | expr | E!
x,y | E?

x,y | ¬ψ | ψ1 ∨ ψ2,

where expr : Bool ∈ ExprS , E ∈ E , x, y ∈ X (or keyword env , or ∗).

Satisfaction of Signal and Attribute Expressions

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
m
o
d
el
la
n
g
–

18/45

• Let (σ, u, cons, Snd) ∈ ΣD

S × Ã be a tuple
consisting of system state, object identity, consume set, and send set.

• Let β : X → D(C) be a valuation of the logical variables.

Then

• (σ, u, cons ,Snd) |=β true

• (σ, u, cons ,Snd) |=β expr if and only if IJexprK(σ, β) = 1

• (σ, u, cons ,Snd) |=β ¬ψ if and only if not (σ, cons ,Snd) |=β ψ

• (σ, u, cons ,Snd) |=β ψ1 ∨ ψ2 if and only if
(σ, u, cons,Snd) |=β ψ1 or (σ, u, cons, Snd) |=β ψ2

• (σ, u, cons ,Snd) |=β E
!
x,y if and only if

β(x) = u ∧ ∃ e ∈ dom(σ) ∩ D(E) • (e, β(y)) ∈ Snd

• (σ, u, cons ,Snd) |=β E
?
x,y if and only if β(y) = u ∧ cons ∩ D(E) 6= ∅

Satisfaction of Signal and Attribute Expressions

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
m
o
d
el
la
n
g
–

18/45

• Let (σ, u, cons, Snd) ∈ ΣD

S × Ã be a tuple
consisting of system state, object identity, consume set, and send set.

• Let β : X → D(C) be a valuation of the logical variables.

Then

• (σ, u, cons ,Snd) |=β true

• (σ, u, cons ,Snd) |=β expr if and only if IJexprK(σ, β) = 1

• (σ, u, cons ,Snd) |=β ¬ψ if and only if not (σ, cons ,Snd) |=β ψ

• (σ, u, cons ,Snd) |=β ψ1 ∨ ψ2 if and only if
(σ, u, cons,Snd) |=β ψ1 or (σ, u, cons, Snd) |=β ψ2

• (σ, u, cons ,Snd) |=β E
!
x,y if and only if

β(x) = u ∧ ∃ e ∈ dom(σ) ∩ D(E) • (e, β(y)) ∈ Snd

• (σ, u, cons ,Snd) |=β E
?
x,y if and only if β(y) = u ∧ cons ∩ D(E) 6= ∅

Observation: semantics of models keeps track of sender and receiver at sending and
consumption time, but we disregard the event identity (for simplicity).

Alternative: keep track of event identities between send and receive.

TBA over Signature

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
m
o
d
el
la
n
g
–

20/45

Definition. A TBA

B = (ExprB(X), X,Q, qini ,→, QF)

where ExprB(X) is the set of signal and attribute expressions

ExprS (E , X) over signature S is called TBA over S .

Live Sequence Charts — Semantics

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

21/45

TBA-based Semantics of LSCs

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
ls
cp
re
se
m

–

22/45

UML

M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr), SM

M = (ΣD
S
, AS ,→SM)

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

✔ ✔

✔ ✔

✔

✘

✔

✘

✘✔

✔

✔

✔

✔

Plan:

• Given an LSC L with body

(I, (L ,�),∼,S ,Msg,Cond, LocInv),

• construct a TBA BL, and

• define language L(L) of L in terms of L(BL),

in particular taking activation condition and activation mode into account.

• Then M |= L (universal) if and only if L(M) ⊆ L(L).

And M |= L (existential) if and only if L(M) ∩ L(L) 6= ∅.

Formal LSC Semantics: It’s in the Cuts!

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
ls
cc
u
tfi
re

–

23/45

Definition.

Let (I, (L ,�),∼,S ,Msg,Cond, LocInv) be an LSC body.

A non-empty set ∅ 6= C ⊆ L is called a cut of the LSC body iff

• it is downward closed, i.e. ∀ l, l′ • l′ ∈ C ∧ l � l′ =⇒ l ∈ C,

• it is closed under simultaneity, i.e.

∀ l, l′ • l′ ∈ C ∧ l ∼ l′ =⇒ l ∈ C, and

• it comprises at least one location per instance line, i.e.

∀ i ∈ I ∃ l ∈ C • il = i.

A cut C is called hot, denoted by θ(C) = hot, if and only if at least one
of its maximal elements is hot, i.e. if

∃ l ∈ C • θ(l) = hot ∧ ∄ l′ ∈ C • l ≺ l′

Otherwise, C is called cold, denoted by θ(C) = cold.

Cut Examples

–
1
8
–
2
0
1
6
-0
1
-2
8
–
S
ls
cc
u
tfi
re

–

24/45

∅ 6= C ⊆ L — downward closed — simultaneity closed — at least one loc. per instance line

C1 C2

ϕ

C3

E

F

G

l1,0

l1,1

l1,2

l2,0

l2,1

l2,2

l2,3

l3,0

l3,1

References

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

44/45

References

–
1
8
–
2
0
1
6
-0
1
-2
8
–
m
a
in

–

45/45

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

