Software Design, Modelling and Analysis in UML

Lecture 18: Live Sequence Charts II

2016-01-28

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- 18 - 2016-01-28 - main -

- Rhapsody code generation
- Interactions: Live Sequence Charts
- LSC syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - How is the semantics of LSCs constructed?
 - What is a cut, fired-set, etc.?
 - Construct the TBA for this LSC.
 - Give one example which (non-)trivially satisfies this LSC.

• Content:

- Symbolic Automata
- Firedset, Cut
- Automaton construction
- Transition annotations

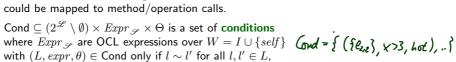
17 - 2016-01-21 - SIscasyn

LSC Body: Abstract Syntax

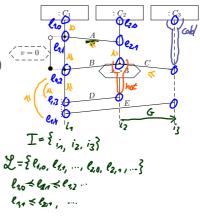
Let $\Theta = \{ \mathsf{hot}, \mathsf{cold} \}$. An **LSC body** is a tuple

 $(I, (\mathcal{L}, \preceq), \sim, \mathcal{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$

- I is a finite set of instance lines,
- (\mathscr{L}, \preceq) is a finite, non-empty, partially ordered set of locations; each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_l \in I$,
- $\sim \subseteq \mathcal{L} \times \mathcal{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\bullet \ \mathcal{S} = (\mathcal{T}\!, \mathscr{C}\!, V, atr, \mathscr{E})$ is a signature,
- Msg $\subseteq \mathcal{L} \times \mathcal{E} \times \mathcal{L}$ is a set of asynchronous messages with $(l,b,l') \in \mathsf{Msg}$ only if $l \leq l', \ell \nsim \ell'$ could be mapped to method/operation calls.



• LocInv $\subseteq \mathcal{L} \times \{\circ, \bullet\} \times Expr_{\mathscr{S}} \times \Theta \times \mathcal{L} \times \{\circ, \bullet\}$ is a set of local invariants, LocInv $= \{ (l_{20}, 0, v=0, \omega ld, l_{22}, \bullet)_{j, -1} \}$



My = { (la, A, le,), ... }

7/4

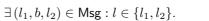
Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

• For each location $l \in \mathcal{L}$, if l is the location of

- a condition, i.e. $\exists (L, expr, \theta) \in \mathsf{Cond} : l \in L$, or
- a local invariant, i.e. $\exists (l_1, i_1, expr, \theta, l_2, i_2) \in \mathsf{LocInv} : l \in \{l_1, l_2\}$, or

then there is a location l' equivalent to l, i.e. $l \sim l'$, which is the location of

• an **instance head**, i.e. l' is minimal wrt. \leq , or



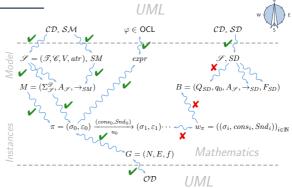
Note: if messages in a chart are **cyclic**, then there doesn't exist a partial order (so such charts **don't even have** an abstract syntax).

- 18 - 2016-01-28 - Slscwellform

5/45

Live Sequence Charts — Semantics

TBA-based Semantics of LSCs



Plan:

- 18 - 2016-01-28 - SIscpresem

 \bullet Given an LSC L with body

 $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv}),$

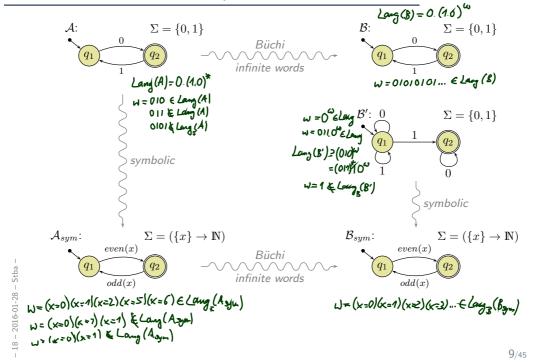
- ullet construct a TBA \mathcal{B}_L , and
- define language $\mathcal{L}(L)$ of L in terms of $\mathcal{L}(\mathcal{B}_L)$, in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$. And $\mathcal{M} \models L$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(L) \neq \emptyset$.

7/45

Excursion: Büchi Automata

- 18 - 2016-01-28 - main -

From Finite Automata to Symbolic Büchi Automata



Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$\mathcal{B} = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$

where

- X is a set of logical variables,
- ullet $Expr_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{ini} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times Expr_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions (q, ψ, q') from q to q' are labelled with an expression $\psi \in Expr_{\mathcal{B}}(X)$.
- $Q_F \subseteq Q$ is the set of **fair** (or accepting) states.

- 18 - 2016-01-28 - Stba -

Definition. Let X be a set of logical variables and let $Expr_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma,\cdot\models.\cdot)$ is called an **alphabet** for $\mathit{Expr}_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression $expr \in Expr_{\mathcal{B}}$, and
- for each valuation $\beta: X \to \mathscr{D}(X)$ of logical variables to domain $\mathscr{D}(X)$,

either
$$\sigma \models_{\beta} expr$$
 or $\sigma \not\models_{\beta} expr$.

An infinite sequence

$$w = (\sigma_i)_{i \in \mathbb{N}_0} \in \Sigma^{\omega}$$

over $(\Sigma, \cdot \models \cdot)$ is called **word** for $Expr_{\mathcal{B}}(X)$.

11/45

Run of TBA over Word

Definition. Let $\mathcal{B} = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$ be a TBA and

$$w = \sigma_1, \sigma_2, \sigma_3, \dots$$

a word for $\operatorname{Expr}_{\mathcal{B}}(X).$ An infinite sequence

$$\varrho = q_0, q_1, q_2, \ldots \in Q^{\omega}$$

is called **run of** $\mathcal B$ **over** w under valuation $\beta:X\to\mathscr D(X)$ if and only if

- $q_0 = q_{ini}$,
- for each $i \in \mathbb{N}_0$ there is a transition $(q_i, \psi_i, q_{i+1}) \in \to$ such that $\sigma_i \models_{\beta} \psi_i$.

W= (x=0)(x=1)(x=2)... R= 91729...

 $\mathcal{B}_{sym} \colon \qquad \qquad \Sigma = (\{x\} \to \mathbb{N})$ **Example**: $q_1 \qquad \qquad q_2 \qquad \qquad q_1 \qquad \qquad q_1 \qquad \qquad q_1 \qquad \qquad q_2 \qquad \qquad q_1 \qquad \qquad q_2 \qquad \qquad q_1 \qquad \qquad q_2 \qquad \qquad q_2 \qquad \qquad q_1 \qquad \qquad q_2 \qquad \qquad q_2 \qquad \qquad q_1 \qquad \qquad q_2 \qquad$

- 18 - 2016-01-28 - Stba

Definition.

We say TBA $\mathcal{B}=(Expr_{\mathcal{B}}(X),X,Q,q_{ini},\rightarrow,$ accepts the word $w=(\sigma_i)_{i\in\mathbb{N}_0}\in(Expr_{\mathcal{B}}\to\mathbb{B})^\omega$ if and only $\varrho=(q_i)_{i\in\mathbb{N}_0}$

over w such that fair (or accepting) states are ${\bf visited}$ infinitely often by $\varrho,$ i.e., such that

$$\forall i \in \mathbb{N}_0 \ \exists j > i : q_j \in Q_F.$$

We call the set $\mathcal{L}(\mathcal{B}) \subseteq (Expr_{\mathcal{B}} \to \mathbb{B})^{\omega}$ of words that are accepted by \mathcal{B} the **language of** \mathcal{B} .

- 18 - 2016-01-28 - Stba -

13/45

Language of UML Model

- 18 - 2016-01-28 - main -

Definition. Let $\mathscr{S}=(\mathscr{T},\mathscr{C},V,atr,\mathscr{E})$ be a signature and \mathscr{D} a structure of \mathscr{S} . A **word** over \mathscr{S} and \mathscr{D} is an infinite sequence

 $(\sigma_i, u_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in \Sigma_\mathscr{S}^\mathscr{D} \times \mathscr{D}(\mathscr{C}) \times 2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \; \dot{\cup} \; \{*, +\}) \times \mathscr{D}(\mathscr{C})}$

15/45

The Language of a Model

Recall: A UML model $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$ and a structure \mathscr{D} denote a set $[\![\mathcal{M}]\!]$ of (initial and consecutive) **computations** of the form

$$(\sigma_0,\varepsilon_0) \xrightarrow{a_0} (\sigma_1,\varepsilon_1) \xrightarrow{a_1} (\sigma_2,\varepsilon_2) \xrightarrow{a_2} \dots \text{ where}$$

$$a_i = (cons_i,Snd_i,u_i) \in \underbrace{2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E})\;\dot{\cup}\;\{*,+\})\times\mathscr{D}(\mathscr{E})} \times \mathscr{D}(\mathscr{E})}_{=:\tilde{A}}.$$

For the connection between models and interactions, we **disregard** the configuration of **the ether**, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{CD},\mathscr{SM},\mathscr{OD})$ be a UML model and \mathscr{D} a structure. Then

$$\mathcal{L}(\mathcal{M}) := \{ (\sigma_i, u_i, cons_i, Snd_i)_{i \in \mathbb{N}_0} \in (\Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A})^{\omega} \mid \exists (\varepsilon_i)_{i \in \mathbb{N}_0} : \underbrace{\sigma_0}_{(\varepsilon_0)} \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \cdots \in \llbracket \mathcal{M} \rrbracket \}$$

is the **language** of \mathcal{M} .

Signal and Attribute Expressions

- Let $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr, \mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $Expr_{\mathscr{L}}(\mathscr{E},X)$ are defined by the grammar:

$$\psi ::= true \mid expr \mid E_{x,y}^! \mid E_{x,y}^? \mid \neg \psi \mid \psi_1 \vee \psi_2,$$

where $expr: Bool \in Expr_{\mathscr{L}}$, $E \in \mathscr{E}$, $x, y \in X$ (or keyword env, or *).

-18 - 2016 - 01 - 28 - Smodellang -

17/45

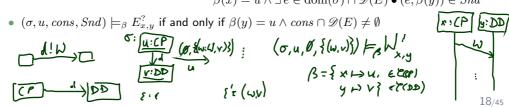
Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, u, cons, Snd) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \to \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, u, cons, Snd) \models_{\beta} true$
- $(\sigma, u, cons, Snd) \models_{\beta} expr$ if and only if $I[[expr]](\sigma, \beta) = 1$
- $(\sigma, u, cons, Snd) \models_{\beta} \neg \psi$ if and only if not $(\sigma, cons, Snd) \models_{\beta} \psi$
- $(\sigma, u, cons, Snd) \models_{\beta} \psi_1 \lor \psi_2$ if and only if
- $\bullet \ \, (\sigma,u,cons,Snd) \models_{\beta} E_{x,y}^{!} \text{ if and only if } \qquad \begin{array}{c} \text{D(L)} & \text{D(E)} \\ \text{ψ} & \text{ψ} \\ \beta(x) = u \land \exists \, e \in \mathrm{dom}(\sigma) \cap \mathscr{D}(E) \bullet (e,\beta(y)) \in \mathit{Snd} \end{array}$

 $(\sigma, u, cons, Snd) \models_{\beta} \psi_1 \text{ or } (\sigma, u, cons, Snd) \models_{\beta} \psi_2$



- 18

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, u, cons, Snd) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \to \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

2016-01-28 — Smodellang

- $(\sigma, u, cons, Snd) \models_{\beta} true$
- $(\sigma, u, cons, Snd) \models_{\beta} expr$ if and only if $I[[expr]](\sigma, \beta) = 1$
- $(\sigma, u, cons, Snd) \models_{\beta} \neg \psi$ if and only if not $(\sigma, cons, Snd) \models_{\beta} \psi$
- $(\sigma, u, cons, Snd) \models_{\beta} \psi_1 \lor \psi_2$ if and only if $(\sigma, u, cons, Snd) \models_{\beta} \psi_1$ or $(\sigma, u, cons, Snd) \models_{\beta} \psi_2$
- $(\sigma, u, cons, Snd) \models_{\beta} E_{x,y}^!$ if and only if

$$\beta(x) = u \land \exists e \in \text{dom}(\sigma) \cap \mathcal{D}(E) \bullet (e, \beta(y)) \in Snd$$

• $(\sigma, u, cons, Snd) \models_{\beta} E_{x,y}^{?}$ if and only if $\beta(y) = u \wedge cons \cap \mathscr{D}(E) \neq \emptyset$

Observation: semantics of models **keeps track** of sender and receiver at sending and consumption time, but we disregard the event identity (for simplicity).

Alternative: keep track of event identities between send and receive.

18/45

TBA over Signature

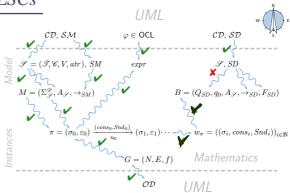
Definition. A TBA

$$\mathcal{B} = (Expr_{\mathcal{B}}(X), X, Q, q_{ini}, \rightarrow, Q_F)$$

where $Expr_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $Expr_{\mathscr{S}}(\mathscr{E},X)$ over signature \mathscr{S} is called **TBA** over \mathscr{S} .

- 18 - 2016-01-28 - Smodellang -

TBA-based Semantics of LSCs



Plan:

 \bullet Given an LSC L with body

 $(I,(\mathscr{L},\preceq),\sim,\mathscr{S},\mathsf{Msg},\mathsf{Cond},\mathsf{LocInv}),$

- ullet construct a TBA \mathcal{B}_L , and
- define language $\mathcal{L}(L)$ of L in terms of $\mathcal{L}(\mathcal{B}_L)$, in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$. And $\mathcal{M} \models L$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(L) \neq \emptyset$.

22/45

Definition.

Let $(I, (\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathsf{Msg}, \mathsf{Cond}, \mathsf{LocInv})$ be an LSC body. A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a **cut** of the LSC body iff

- it is downward closed, i.e. $\forall l, l' \bullet l' \in C \land l \leq l' \implies l \in C$,
- it is closed under simultaneity, i.e.

$$\forall \, l, l' \bullet l' \in C \land l \sim l' \implies l \in C$$
, and

• it comprises at least one location per instance line, i.e.

$$\forall i \in I \ \exists l \in C \bullet i_l = i.$$

A cut C is called **hot**, denoted by $\theta(C)=$ hot, if and only if at least one of its maximal elements is hot, i.e. if

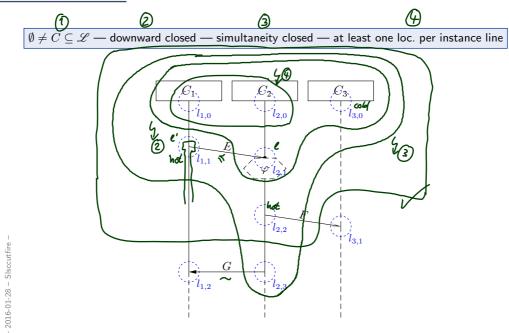
$$\exists l \in C \bullet \theta(l) = \mathsf{hot} \land \nexists l' \in C \bullet l \prec l'$$

Otherwise, C is called **cold**, denoted by $\theta(C) = \text{cold}$.

23/45

24/45

Cut Examples



- 18 - 2016-01-28 - Slsccutfire -

References

-18 - 2016-01-28 - main -

44/45

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

- 18 - 2016-01-28 - main -