Software Design, Modelling and Analysis in UML

 Lecture 18: Live Sequence Charts II2016-01-28
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents \& Goals

Last Lecture:

- Rhapsody code generation
- Interactions: Live Sequence Charts
- LSC syntax

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
- How is the semantics of LSCs constructed?
- What is a cut, fired-set, etc.?
- Construct the TBA for this LSC.
- Give one example which (non-)trivially satisfies this LSC.

- Content:

- Symbolic Automata
- Firedset, Cut
- Automaton construction
- Transition annotations

Live Sequence Charts - Syntax

LSC Body: Abstract Syntax

Let $\Theta=\{$ hot, cold $\}$. An LSC body is a tuple

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \text { Msg, Cond, Loclnv })
$$

- I is a finite set of instance lines,
- (\mathscr{L}, \preceq) is a finite, nonempty, partially ordered set of locations; each $l \in \mathscr{L}$ is associated with a temperature $\theta(l) \in \Theta$ and an instance line $i_{l} \in I$,
- $\sim \subseteq \mathscr{L} \times \mathscr{L}$ is an equivalence relation on locations, the simultaneity relation,
- $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ is a signature,

- $\mathrm{Msg} \subseteq \mathscr{L} \times \mathscr{E} \times \mathscr{L}$ is a set of asynchronous messages with $\left(l, b, l^{\prime}\right) \in$ Msg only if $l \preceq l^{\prime}, e \times \ell^{\prime}$ [8< instantaneous messages - if $\ell \sim C^{\prime}$

$$
M_{0}=\left\{\left(e_{1,1}, A_{1}, e_{2, n}\right), \ldots\right\}
$$ could be mapped to method/operation calls.

- Cord $\subseteq\left(2^{\mathscr{L}} \backslash \emptyset\right) \times \operatorname{Expr}_{\mathscr{S}} \times \Theta$ is a set of conditions where Exp $\mathscr{S}_{\mathscr{S}}$ are OCL expressions over $W=I \cup\{$ self $\} \quad \operatorname{Cond}=\left\{\left(\left\{e_{2,2}\right\}, x>3\right.\right.$, hot $\left.), ..\right\}$ with $(L, \operatorname{expr}, \theta) \in$ Cons only if $l \sim l^{\prime}$ for all $l, l^{\prime} \in L$,
- Loclnv $\subseteq \mathscr{L} \times\{0, \bullet\} \times E x p r_{\mathscr{S}} \times \Theta \times \mathscr{L} \times\{\circ, \bullet\}$ is a set of local invariants,

$$
\text { Lock } v=\left\{\left(e_{12}, 0, v=0, \text { cold }, e_{22}, 0\right),\right\}
$$

Well-Formedness

Bondedness/no floating conditions: (could be relaxed a little if we wanted to)

- For each location $l \in \mathscr{L}$, if l is the location of
- a condition, i.e. $\exists(L, \operatorname{expr}, \theta) \in$ Cond $: l \in L$, or
- a local invariant, i.e. $\exists\left(l_{1}, i_{1}, \operatorname{expr}, \theta, l_{2}, i_{2}\right) \in \operatorname{Loclnv}: l \in\left\{l_{1}, l_{2}\right\}$, or ${\underset{\sim}{\mp}}^{\mp}$
then there is a location l^{\prime} equivalent to l, i.e. $l \sim l^{\prime}$, which is the location of
- an instance head, i.e. l^{\prime} is minimal wrt. \preceq, or

NGT:

Floating

- a message, i.e.

$$
\exists\left(l_{1}, b, l_{2}\right) \in \operatorname{Msg}: l \in\left\{l_{1}, l_{2}\right\} .
$$

OK:

Note: if messages in a chart are cyclic, then there doesn't exist a partial order (so such charts don't even have an abstract syntax).

No:

OK:

Live Sequence Charts - Semantics

UML

Plan:

- Given an LSC L with body

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}, \text { Cond, Loclnv })
$$

- construct a TBA \mathcal{B}_{L}, and
- define language $\mathcal{L}(L)$ of L in terms of $\mathcal{L}\left(\mathcal{B}_{L}\right)$,
in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$.

And $\mathcal{M} \models L$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(L) \neq \emptyset$.

From Finite Automata to Symbolic Büchi Automata

Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where

- X is a set of logical variables,
- $\operatorname{Expr}_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{i n i} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \operatorname{Expr}_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions $\left(q, \psi, q^{\prime}\right)$ from q to q^{\prime} are labelled with an expression $\psi \in \operatorname{Expr}_{\mathcal{B}}(X)$.
- $Q_{F} \subseteq Q$ is the set of fair (or accepting) states.

Word

Definition. Let X be a set of logical variables and let $\operatorname{Expr}_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma, \cdot \models . \cdot)$ is called an alphabet for $\operatorname{Expr}_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression expr $\in \operatorname{Expr}_{\mathcal{B}}$, and
- for each valuation $\beta: X \rightarrow \mathscr{D}(X)$ of logical variables to domain $\mathscr{D}(X)$,

$$
\text { either } \sigma \models_{\beta} \operatorname{expr} \text { or } \sigma \not \models_{\beta} \operatorname{expr} \text {. }
$$

An infinite sequence

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma^{\omega}
$$

$\operatorname{over}(\Sigma, \cdot \models \cdot \cdot)$ is called word for $\operatorname{Expr}_{\mathcal{B}}(X)$.

Run of TBA over Word

Definition. Let $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right)$ be a TBA and

$$
w=\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots
$$

a word for $\operatorname{Expr}_{\mathcal{B}}(X)$. An infinite sequence

$$
\varrho=\underbrace{q_{0}, q_{1}}_{\psi_{0}} \underbrace{q_{1}}_{\psi_{1}}, q_{2}, \ldots \in Q^{\omega}
$$

is called run of \mathcal{B} over w under valuation $\beta: X \rightarrow \mathscr{D}(X)$ if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition $\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow$ such that $\sigma_{i} \models_{\beta} \psi_{i}$.
$w=(x=0)(x=1)(x=2) \ldots$
$h=q_{1}$ q. $_{2} q_{n} \cdot$.

Definition.
We say TBA $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow\right.$ taccept $\$$ the word $w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ if and only

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F} .
$$

We call the set $\mathcal{L}(\mathcal{B}) \subseteq\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ of words that are accepted by \mathcal{B} the language of \mathcal{B}.

Words over Signature

Definition. Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, att, $\mathscr{E})$ be a signature and \mathscr{D} a structure of \mathscr{S}. A word over \mathscr{S} and \mathscr{D} is an infinite sequence

$$
\left(\sigma_{i}, u_{i}, \text { cons }_{i}, S n d_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \mathscr{D}(\mathscr{C}) \times 2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \dot{\cup}\{*,+\}) \times \mathscr{D}(\mathscr{C})}
$$

$$
\begin{gathered}
(\sigma, \varepsilon) \xrightarrow[u]{(\text { cos }, \text { sud })}\left(\sigma^{\prime}, \varepsilon^{\prime}\right) \\
\vdots \\
(\sigma, u, \text { cons, sud })
\end{gathered}
$$

${ }^{\text {egg. }}(\sigma, u,\{e\},\{(f, u)\})$

The Language of a Model

Recall: A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ and a structure \mathscr{D} denote a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) computations of the form

$$
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{a_{0}}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{a_{1}}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow{a_{2}} \ldots \text { where }
$$

$a_{i}=\left(\right.$ cons $\left._{i}, \operatorname{Snd}_{i}, u_{i}\right) \in \underbrace{2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \dot{\cup}\{*,+\}) \times \mathscr{D}(\mathscr{C})} \times \mathscr{D}(\mathscr{C})}_{=: \tilde{A}}$.
For the connection between models and interactions, we disregard the configuration of the ether, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model and \mathscr{D} a structure. Then

$$
\begin{aligned}
& \mathcal{L}(\mathcal{M}):=\left\{\left(\sigma_{i}, u_{i}, \text { cons }_{i}, \operatorname{Snd}_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}\right)^{\omega} \mid\right.
\end{aligned}
$$

is the language of \mathcal{M}.

Signal and Attribute Expressions

- Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V, a t r, \mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ are defined by the grammar:

$$
\psi::=\operatorname{true}|\operatorname{expr}| E_{x, y}^{!}\left|E_{x, y}^{?}\right| \neg \psi \mid \psi_{1} \vee \psi_{2}
$$

where expr : Bool $\in \operatorname{Expr}_{\mathscr{S}}, E \in \mathscr{E}, x, y \in X$ (or keyword env, or $*$).

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, u$, cons,$S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \rightarrow \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, u$, cons,$S n d) \models_{\beta}$ true
- $(\sigma, u$, cons,$S n d) \models_{\beta} \operatorname{expr}$ if and only if $I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)=1$

- $(\sigma, u$, cons, Snd $) \models_{\beta} \neg \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if

$$
(\sigma, u, \text { cons }, \text { Snd }) \models_{\beta} \psi_{1} \text { or }(\sigma, u, \text { cons, Snd }) \models_{\beta} \psi_{2}
$$

- $(\sigma, u$, cons, Snd $) \models_{\beta} E_{x, y}^{!}$if and only if $D(\ell) \quad \mathbb{D}(\varepsilon)$

$$
\beta(x)=\stackrel{\mathbb{U}}{u} \wedge \exists \stackrel{\mathbb{U}}{e} \in \operatorname{dom}(\sigma) \cap \mathscr{D}(E) \bullet(e, \beta(y)) \in \operatorname{Snd}
$$

- $(\sigma, u$, cons,$S n d) \models_{\beta} E_{x, y}^{?}$ if and only if $\beta(y)=u \wedge$ cons $\cap \mathscr{D}(E) \neq \emptyset$

- Let $(\sigma, u$, cons,$S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{S}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \rightarrow \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, u$, cons, Snd $) \models_{\beta}$ true
- $(\sigma, u$, cons, Snd $) \models_{\beta} \operatorname{expr}$ if and only if $I \llbracket \operatorname{expr} \rrbracket(\sigma, \beta)=1$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \neg \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
- $(\sigma, u$, cons,$S n d) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if

$$
(\sigma, u, \text { cons }, \text { Snd }) \models_{\beta} \psi_{1} \text { or }(\sigma, u, \text { cons, Snd }) \models_{\beta} \psi_{2}
$$

- $(\sigma, u$, cons,$S n d) \models_{\beta} E_{x, y}^{!}$if and only if

$$
\beta(x)=u \wedge \exists e \in \operatorname{dom}(\sigma) \cap \mathscr{D}(E) \bullet(e, \beta(y)) \in \operatorname{Snd}
$$

- $(\sigma, u$, cons,$S n d) \models_{\beta} E_{x, y}^{?}$ if and only if $\beta(y)=u \wedge$ cons $\cap \mathscr{D}(E) \neq \emptyset$

Observation: semantics of models keeps track of sender and receiver at sending and consumption time, but we disregard the event identity (for simplicity).
Alternative: keep track of event identities between send and receive.

TBA over Signature

Definition. A TBA

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where $\operatorname{Expr}_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ over signature \mathscr{S} is called TBA over \mathscr{S}.

Live Sequence Charts - Semantics

Plan:

- Given an LSC L with body

$$
(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}, \text { Cond, Loclnv })
$$

- construct a TBA \mathcal{B}_{L}, and
- define language $\mathcal{L}(L)$ of L in terms of $\mathcal{L}\left(\mathcal{B}_{L}\right)$,
in particular taking activation condition and activation mode into account.
- Then $\mathcal{M} \models L$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(L)$.

And $\mathcal{M} \models L$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(L) \neq \emptyset$.

Formal LSC Semantics: It's in the Cuts!

Definition.

Let $(I,(\mathscr{L}, \preceq), \sim, \mathscr{S}, \mathrm{Msg}$, Cond, Loclnv) be an LSC body.
A non-empty set $\emptyset \neq C \subseteq \mathscr{L}$ is called a cut of the LSC body iff

- it is downward closed, i.e. $\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C$,
- it is closed under simultaneity, i.e.

$$
\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C, \text { and }
$$

- it comprises at least one location per instance line, i.e.

$$
\forall i \in I \exists l \in C \bullet i_{l}=i
$$

A cut C is called hot, denoted by $\theta(C)=$ hot, if and only if at least one of its maximal elements is hot, i.e. if

$$
\exists l \in C \bullet \theta(l)=\operatorname{hot} \wedge \nexists l^{\prime} \in C \bullet l \prec l^{\prime}
$$

Otherwise, C is called cold, denoted by $\theta(C)=$ cold.

Cut Examples

References

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

