Software Design, Modelling and Analysis in UML

Lecture 20: Inheritance

2016-02-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitit Freiburg, Germany

Abstract Syntax

A signature with inheritance is a tuple

S = (Z,€,V, atr, &, F, mth, <))

where Tl

< (TEV, n:zrmﬂm a signature with signals and behavioural features (F/mth are
methods, analogous to V/atr attributes), and

e AC(EXE)U(E X E)
is an acyclic generalisation relation, i.e. C <t C for no C' € %

In the following (for simplicity), we assume that all attribute (method) names are of the
form C::v and C::f for some C' € % U & (“fully qualified names”).

Read C < D as...

D inherits from C,

o Cis a generalisation of D,
isation of C,

« Disa spe

© Cis a super-class of D,
« Dis a sub-class of C,

20

430

Contents & Goals

Last Lectu

o Firedset, Cut
+ Automaton construction

This Lecture:

ies for following tasks/questions.

 Educational Objectives: Capal
© What's the Liskov Substitution Principle?
© What is late/early binding?
* What is the subset / u
© What's the effect of inheritance on LSCs, State Machines, System States?

k semantics of inheritance?

o Content:

o Inheritance in UML: concrete syntax

o Liskov Substitution Principle — desired semantics

« Two approaches to obtain desired semantics

2016-02-04

Helper Notions

Defi n.

3_no_‘n_mmmmmﬁ?o.fbmﬂ.immm<Um.ﬂrm_‘mnm:‘oio‘oiwg;
and only if there are C3,...Cy,Cl,...C" € 6, n,m > 0, sit.

o A_Q.“A.:QMA_\O,A_/ act<a...Cf < D

(i) We use <1* to denote the reflexive, transitive closure of <I.

20

Inheritance: Syntax

3730

Inheritance: Concrete Syntax

Common graphical representations (of <= {(C, D1), (C, Ds)}):

o o
o D, o 9
Mapping Concrete to Abstract Syntax by Example: ®
a={ (G,c),
¢ C2),
()t

i]

Note: we can have multiple inheritance. 620

Inheritance: Desired Semantics

Domain Inclusion Semantics

1030

Desired Semantics of Specialisation: Subtyping

There is a classical description of what one expects from sub-types, which is closely
related to inheritance in object-oriented approaches:

The principle of type substitutability Liskov (1988); Liskov and W
Substitution Principle (LSP)).

(1994) (Liskov

f for each object o1 of type S

there is an object o of type 7'

such that for all programs P defined in terms of 7

the behavior of P is unchanged when o, is substituted for oy
then S is a subtype of T."

In other words: Fischer and Wehrheim (2000)

“An instance of the sub-type shall be usable
whenever an instance of the supertype was expected,
without a client being able to tell the difference.

2016-02-04

Domain Inclusion Structure

20

A domain inclusion structure % for signature . = (7,%,V, atr, &, F, mth, <)

o [as before] maps types, classes, associations to domains,

o [for completeness] maps methods to transformers,

o [as before] has infinitely many object identities per class in #(D), DEE,

o [changed] the indentities of a super-class comprise all identities of sub-classes, i.e.
YCaDe?:2(D) < 2(C)

ies of instances of classes not (transitively) related by generalisation are

C 4" Dand D 4" C implies 2(C) N (D) = 0

AL ok
Note: the old setting coincides with the special case <1 = ().

l<~\

1,2 DAY

%.%,2.0, .
sUS

11/30

Subtyping: Example T 0

o SMreacher

[Ty = & Student

WrongAns/

- Teacher =g Genus
) LA
(o) G»W Gir) %.v G"s) 2~|~ &) .

/1! Silence

Teacher H: GenStWorker

Domain Inclusion System States

A system state of . wrt. (domain
mapping

clusion structure) & is a type-consistent
0 DE) o (V- (D(T)UD(%01) U D(E.)))
that is, for all u € dom(o) N 2(C),
o [as before] o(u)(v) € Z(T) if v: T,
o [changed] o(u), u € 2(C), has values for all attributes of C' and all of its superclasses,
ie.

Do) dom(o(u)) = C 4%8&.
mvhs \ SO) a0

Note: the old setting s

coincides with the special case <t = (.
12/30

OCL Syntax and Typing

« Recall (part of the) OCL syntax and typing (C,D € €, v,r € V)

expri= v(empr,) 10 = T(v), ifv:T€atr(C), TeT
| r(expry) :7c = 7D, if r: Do € atr(C)
| r(eapry) :7c — Set(rp), ifr: D € atr(C)

The syntax basically stays the same:

eapr = Ciw(eapry) 70 = T(v), ‘Tear(C), TeT
...
[v(eapr,) i1 = T(v),
[r(eapr)) i1 =D,
| r(eapr,) e = Set(rp),

but typing rules change: we require a unique biggest superclass Cy <I* C' € %'
with, e.g. ;v € atr(Cy) and for this v we have v : T'
o

¢
coadext ¢ v G0
condact D v Cuses0

et D i K50

Note: the old setting still coincides with the special case <1 = ().

Expression Normalisation

Normalise:

o Given expression v(.... (w)...) with

» normalise v to (= replace by) C

v € atr(C),

o where C is the unique most special more general class with

)
VC a*Cy<a*DeCy=C. >
Note: existence of such an C is guaranteed by (the new) OCL sm,_.z%&_m.%
=

context A inv:iz <0 ~

Example
v+ (= [4]
o context D invia <~ bt Diwi (30 g PR
o context C invia <0 s i (R0
. AzxSD 4
/

L Cix <0

context D inv:ing< 0~
context C' inv:ndk 0 va ‘
o context D inv: Az < 0 b -+ A3K<O

2016-
.

AN

Visibility and Inheritance

OCL Example
o
uz : C
Az =1
Ciz =27

14&,\%\

Example:
v <0 2 <0 vz <0
context C inv v v v
context D inv : X / v >
o1 <0 | nwz <0 | nug <0
context B inv : X X v

Eg u(...(self)...) is well-typed
o if v is public, or
v is private, and self : 7c and v € atr(C), or

o I[context D inv:

i x < 0](o, {self —3})

=< m o.«cbm_.&v \OV =< (20) = Fh

=3
“__?o:nmxﬂ D inv:x < 0](o, {self — us})

LT comdut Dinv: Cax <0X(A)
= (s (va)(Cir), 0) s < (3,00 = flx

o if v is protected, and self : 7 and D <* C (unique, biggest) and v € atr(D).

o(ur)(v) if ur € dom(o)
L , otherwise

Iv(eapry)] (e, 8) == ﬁ

Satisfying OCL Constraints (Domain Inclusion)

= I[Normalise(expr)] (o)

Ipi[expr](o

using the same textual definition of I that we have.

Excursus: Late Binding of Behavioural Features

Late Binding

What transformer ap,

es in what situation? (Early (compile time) binding.)

f not overridden in D £ overridden in D @
o)9
s
e (4| @
sl

SomeC > £()

&40 ®

Somed > £()

D)

Lve_ SopeC > 1()

What one could want is something different: (Late binding.)

C=f0 ®

.*H:F am someC —> £()

-)

H o SomeD > £()

SomeC > 1()

B9

: D)

19730

Semantics of Method Calls

* Non late-binding: by normalisation.

Construct a method call transformer, which looks up the method transformer
corresponding to the class we are an instance of.

2016-0

2230

Late Binding in the Standard and Programming Languages

@ In the standard, Section 11.3.10, “CallOperationAction”:

"Semantic Variation Points
The mechanism for determining the method to be invoked as a result of
a call operation is unspecified.” (OMG, 2007, 247)

o In Cht,
« methods are by default “(early) compile time binding”,
* can be declared to be “late binding" by keyword “virtual”,

o the declaration applies to a

® In Java,

+ methods are “late

© there are patterns to imitate the effect of “early

Note: late binding typically applies only to methods, not to attributes.
(But: getter/setter methods have been invented recently.)

ding” '

Behaviour (Inclusion Semantics)

21730

Inheritance and State-Machines: Example

20730
Transformers (Domain Inclusion)
o Transformers also basically remain the same, e.g. [VL 12, p. 18]
update(eapry, v, eapry) : (0.€) > (0. €)
with
o' = ofurs o(u)[v = Ipi[expry] ()]
where u = Ip;[ezpr,] (o) — after normalisation, e.g. assume p qualified.
Sy, y
x:2 0
OO
. w, G 2D @]
w 23730

SMa:

/niF)

Uy v vy HMN
£F Her 1
¢ (hv) e

2430

emsSnd), (1 1y

© uedom(o) N Z(C)Auk € Z(E) : ur € ready(e, u)
AN
« wis stable and in state machine state s, i.e. o(u)(stable) = 1 and o(u)(st) = s,
© a transition is enabled, i.e
(s, F, eapr, act,s') €= (SMc) : F = E A I[expr](5,u) = 1

params ; v ug]

« (0',€') results from applying fuc¢ to (0.) and removing uz from the ether, i
P ~ e Ug
(0".€) € taal(Gre S up),
o' = (0" [u.st > ', w.stable v b, uparams g >)|z (e gy

where b depends (see (i)
« Consumption of ur: and the side effects of the action are observed,

cons = {ug}, Snd = Obse,.[u](#. © ug)

System States with Inheritance

Wanted: a formal representation of “if C' <* D then D ‘is a’ C", that is,

utes and behavioural features as C, and

(i) D has the same at
(i) D objects (identities) can replace C' objects.

Two approaches to semantics:

« Domain-inclusion Semantics (more theoretical)

(more technical)

C lodsf D v ixr0
el D v ¢
e\vb x>0

o Uplink Semantics

T 2830

Inheritance and Interactions

|signat, env))

E

e
(
£z

‘ |

[{sianat, env))

F

(euen,500)
B, paIOA),pe)el e sk, .
u u, Y2 .\
; 26/30
References
B 2930

Domain Inclusion vs. Uplink Semantics

27130

References

Fischer, C. and Wehrheim, H. (2000). Behavioural subtyping relations for object-oriented
formalisms. In Rus, T, editor, AMAST, number 1816 in Lecture Notes in Computer Science.

Springer-Verlag
Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not., 23(5):17-34.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping. ACM Transactions on
Languages and Systems (TOPLAS), 16(6):1811-1841.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report

formal /07-11-02.

al Report

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Tech

& language: Superstructure, version 2.4.1. Technical Report

OMG (2011b). Unified mod;
formal /2011-08-06.

16.02.04 — main -

30730

