Software Design, Modelling and Analysis in UML

Lecture 20: Inheritance

2016-02-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Abstract Syntax

Helper Notions

A signature with inheritance is a tuple

 $\mathcal{S} = (\mathcal{T}, \mathcal{C}, V, atr, \mathcal{E}, F, mth, \lhd)$

4/30

where \mathcal{X} define \mathcal{X} with \mathcal{X} is a signature with signals and behavioural features (F/mth are methods, analogous to V/atr attributes), and $\circ A\subseteq (\mathcal{K}\times\mathcal{K})\cup (\mathcal{K}\times\mathcal{K})$ is an acyclic generalisation relation, i.e. CA^+C for no $C\in\mathcal{K}$.

In the following (for simplicity), we assume that all attribute (method) names are of the form C::v and C::f for some $C\in\mathscr{C}\cup\mathscr{E}$ ("fully qualified names").

Contents & Goals

- Last Lecture:
- Firedset, Cut
- Automaton construction
 Transition annotations

This Lecture:

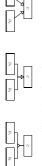
Inheritance: Syntax

- Educational Objectives: Capabilities for following tasks/questions.
 What's the Liskon Substitution Principle?
 What is the John binding?
 What is the subset (uplink semantics of inheritance?
 What's the effect of inheritance on LSCs, State Machines, System States?

- Inheritance in UML: concrete syntax
 Liskov Substitution Principle desired semantics
 Two approaches to obtain desired semantics

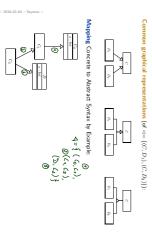
3/30

Inheritance: Concrete Syntax



(ii) We use \lhd^* to denote the reflexive, transitive closure of \lhd .

(i) For classes $C_0,C_1,D\in\mathscr{C}$, we say D inherits from C_0 via C_1 if and only if there are $C_0,\dots C_0^m,C_1^n,\dots C_1^m\in\mathscr{C},\,n,m\geq 0$, s.t. $\underbrace{C_0}_{} \triangleleft C_0^1 \triangleleft \dots C_0^n \triangleleft \underbrace{C_1}_{} \triangleleft C_1^1 \triangleleft \dots C_1^m \triangleleft \underbrace{D}_{}.$



Note: we can have multiple inheritance.

Inheritance: Desired Semantics

In other words: Fischer and Wehrheim (2000) "An instance of the sub-type shall be usable whenever an instance of the supertype was expected, without a client being able to tell the difference."

Desired Semantics of Specialisation: Subtyping

Subtyping: Example

The principle of type substitutability Liskov (1988); Liskov and Wing (1994) (Liskov Substitution Principle (LSP)).

The set object α of type S there is an object α of type T such that for all programs P defined in terms of T the behavior of P is unchanged when α_1 is substituted for α_2 then S is a subtype of T.

There is a classical description of what one expects from sub-types, which is closely related to inheritance in object-oriented approaches:

Domain Inclusion Structure

A domain inclusion structure \mathscr{D} for signature $\mathscr{S}=(\mathscr{T},\mathscr{C},V,\mathit{atr},\mathscr{E},F,\mathit{mth},\vartriangleleft)$

- [as before] maps types, classes, associations to domains,
- [for completeness] maps methods to transformers,
- ullet [as before] has infinitely many object identities per class in $\mathscr{D}(D)$. $\mathfrak{D} \in \mathcal{C}$,
- [changed] the indentities of a super-class comprise all identities of sub-classes, i.e. $\forall\, C \lhd D \in \mathscr{C} : \mathscr{D}(D) \subsetneq \mathscr{D}(C)$

Domain Inclusion Semantics

and indentities of instances of classes not (transitively) related by generalisation are disjoint, i.e. $C \not\preceq^C D$ and $D \not\preceq^C C$ implies $\not\preceq(C) \cap \not\preceq(D) = \emptyset$, for G.

Note: the old setting coincides with the special case $\triangle = \emptyset$.

10/30

:Teacher :Clown : Teacher : Polite /tt Silence | S. M. Poster | S. M. Poster | S. J. M. Good Ans. | S. M. Good Ans. | | S. M. Good Ans. | S. M. Good Ans.

Domain Inclusion System States

A system state of $\mathscr S$ wrt. (domain inclusion structure) $\mathscr D$ is a type-consistent mapping $\sigma: \mathcal{D}(\mathcal{C}) \to (V \to (\mathcal{D}(\mathcal{T}) \cup \mathcal{D}(\mathcal{C}_{0,1}) \cup \mathcal{D}(\mathcal{C}_*)))$

that is, for all $u \in dom(\sigma) \cap \mathscr{D}(C)$,

• [as before] $\sigma(u)(v) \in \mathcal{D}(T)$ if v:T,

• [changed] $\sigma(u),\ u\in \mathscr{D}(C),$ has values for all attributes of C and all of its superclasses, i.e.

Note: the old setting still coincides with the special case $\triangleleft = \emptyset$.

OCL Syntax and Typing

• Recall (part of the) OCL syntax and typing $(C,D\in\mathscr{C},\,v,r\in V)$ The syntax basically stays the same: $\begin{array}{ll} expr ::= v(expr_1) &: \tau_C \to T(v), & \text{if } v : T \in atr(C), \quad T \in \mathcal{F} \\ r(expr_1) &: \tau_C \to \tau_D, & \text{if } r : D_{0,1} \in atr(C) \\ r(expr_1) &: \tau_C \to Set(\tau_D), & \text{if } r : D_* \in atr(C) \end{array}$

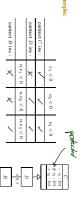
 $\begin{array}{ll} |v(expr_1) &: \tau_C \to T(v), \\ |r(expr_1) &: \tau_C \to \tau_D, \\ |r(expr_1) &: \tau_C \to Set(\tau_D), \end{array}$

 $expr ::= \begin{array}{ccc} C::v(expr_1) &: \tau_C \to T(v), & & \text{if } C::v : T \in atr(C), & T \in \mathcal{F} \end{array}$

but typing rules change: we require a unique biggest superclass $C_0 \triangleleft^* C \in \mathscr{C}$ with, e.g., $v \in atr(C_0)$ and for this v we have v : T. cartest C in Curso cartest D in Curso autost D in Curso $\begin{array}{c|c}
C & C \\
\hline
n & C : x : Int \\
\hline
d : x : Int \\
\hline
\end{array}$

Note: the old setting still coincides with the special case $\triangleleft = \emptyset$.

Visibility and Inheritance



E.g. $v(\dots(self)\dots)$ is well-typed

• if v is public, or • if v is public, and $v \in atr(G)$, or • if v is private, and $v \in t$; τ_C and $D \lhd^* C$ (unique, biggest) and $v \in atr(D)$. • if v is protected, and $v \in t$.

14/30

15/30

* [[context D inv: $x < 0](\sigma, \{soff \rightarrow y_3\})$ * $\prod_{x \in I} Confield D inv: x < 0](\sigma, \{soff \rightarrow y_3\})$ * $\sum_{x \in I} Confield D inv: x < 0$ $I[\![v(expr_1)]\!](\sigma,\beta) := \begin{cases} \sigma(u_1)(v) & \text{if } u_1 \in \text{dom}(\sigma) \\ \bot & \text{, otherwise} \end{cases}$
$$\begin{split} & \underset{\mathbf{y}}{I} \| \text{context } D \text{ inv} : A: x < 0 \| (\sigma, \{self \mapsto u\mathbf{g}\}) \\ &= < \left(\sigma(u\mathbf{g}) (A: x), 0 \right) = < (2, 0) = \text{finite}. \end{split}$$

• context D inv: $A::x < 0 \longrightarrow a:A$ % A:X < 0

• context C inv: nx 0

* context A inv : x < 0 \sim ... A = x > 0

• context D inv: $n \ll 0$ \longrightarrow : $\mathbf{D}^{\mathrm{th}}.\mathcal{C}^{\mathrm{trx}} < \mathbf{0}$ • context C inv : x < 0 \longrightarrow - : $C \bowtie x > 0$ • context D inv : x < 0 \longrightarrow $and x \in \mathcal{D}$ inv $: \mathcal{C} = x > 0$ Expression Normalisation

OCL Example

 $\frac{u_1 : A}{A :: x = 0}$

• where C is the unique most special more general class with $C:v\in atr(C)$, i.e.

Note: existence of such an C is guaranteed by (the new) OCL well-typedness \mathbb{R}^{2d} .

 $\forall C \mathrel{\triangleleft^*} C_0 \mathrel{\triangleleft^*} D \bullet C_0 = C.$

• Given expression $v(\dots(w)\dots)$ with $w:\tau_D$,

normalise v to (= replace by) C::v,

Satisfying OCL Constraints (Domain Inclusion)

 $I_{DI}[\![expr]\!](\sigma) := I[\![Normalise(expr)]\!](\sigma)$

using the same textual definition of I that we have.

Excursus: Late Binding of Behavioural Features

Late Binding

大学生 What transformer applies in what situation? (Early (compile time) binding.) value of the some C Som

2016-02-04 - Slatebind -				
~	!	in the second	* 2	What one
	someC -> 1()	someD -> f()	someC -> f()	could want i
:	0.3%0	0.00	0/8.0	is something di
J::40		(1 . †≈⊈	C:+10	What one could want is something different: (Late binding.) Type of (
6	9	Ø	8)

Late Binding in the Standard and Programming Languages

- In the standard, Section 11.3.10, "CallOperationAction"

"Semantic Variation Points The mechanism for determining the method to be invoked as a result of a call operation is unspecified." (OMG, 2007, 247)

- methods are by default "(early) compile time binding",
 can be declared to be "late binding" by keyword "virtual",
 the declaration applies to all inheriting classes.

- methods are "late binding";
 there are patterns to imitate the effect of "early binding"

Note: late binding typically applies only to methods, not to attributes. (But: getter/setter methods have been invented recently.)

Behaviour (Inclusion Semantics)

20/30

21/30

Transformers (Domain Inclusion)

Semantics of Method Calls

Non late-binding: by normalisation.

Late-binding:
 Construct a method call transformer, which looks up the method transformer corresponding to the class we are an instance of.

 \bullet Transformers also basically remain the same, e.g. [VL 12, p. 18]

 $update(\underbrace{expr_1,v},\underbrace{expr_2}):(\sigma,\varepsilon)\mapsto(\sigma',\varepsilon)$

 $\sigma' = \sigma[u \mapsto \sigma(u)[v \mapsto I_{\widehat{DI}}[[expr_2]](\sigma)]]$ where $u = I_{DI}[[expr_1]](\sigma)$ — after normalisation, e.g. assume \underline{v} qualified.

\$#₅ Cirro

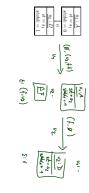
23/30

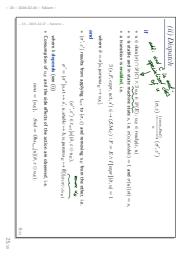
22/30

((signal, env))

E
((signal, env))

Inheritance and State-Machines: Example





Inheritance and Interactions $\cdots \exists \beta$, $\beta(a) \in \mathcal{O}(A)$, $\beta(c) \in \mathcal{C} \circ \cdots \vdash_{\beta} E_{a,c}$

Domain Inclusion vs. Uplink Semantics

27/30

References

References

System States with Inheritance

Wanted: a formal representation of "if $C \triangleleft^* D$ then D 'is a' C", that is, (i) D has the same attributes and behavioural features as C, and (ii) D objects (identities) can replace C objects.

Domain-inclusion Semantics

(more theoretical)

Two approaches to semantics:

• Uplink Semantics

(more technical)

Fischer, C. and Welrheim, H. (2000). Behavioural subspring relations for object-oriented formalisms. In Rus, T., editor, AMAST, number 1816 in Lecture Notes in Computer Science. Springer-Verlag.

Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Not., 23(5):17–34.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping. ACM Transactions on Programming Languages and Systems (TOPLAS), 16(6):1811–1841.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05. OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

29/30