
–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

Software Design, Modelling and Analysis in UML

Lecture 6: Class Diagrams I

2015-11-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Course Map
–
6
–
2
0
1
5
-1
1
-1
2
–
S
p
re
li
m

–

2/27

UML
M
o
d
e
l

In
s
t
a
n
c
e
s

N

S

W E

CD, SM

S = (T,C, V, atr ), SM

M = (ΣD
S
, AS ,→SM )

ϕ ∈ OCL

expr

CD, SD

S ,SD

B = (QSD , q0, AS ,→SD , FSD)

π = (σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)· · · wπ = ((σi, consi,Snd i))i∈N

G = (N,E, f) Mathematics

OD UML

!

✔

✔

✔

✔

✔

✔



Contents & Goals
–
6
–
2
0
1
5
-1
1
-1
2
–
S
p
re
li
m

–

3/27

Last Lecture:

• Object Diagrams

• partial vs. complete; for analysis; for documentation. . .

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What is a class diagram?

• For what purposes are class diagrams useful?

• Could you please map this class diagram to a signature?

• Could you please map this signature to a class diagram?

• Content:

• Study UML syntax.

• Prepare (extend) definition of signature.

• Map class diagram to (extended) signature.

• Stereotypes.



UML Class Diagrams: Stocktaking

–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

4/27



Recall: Signature vs. Class Diagram
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
o
ck

–

5/27

Basic Object System Signature Another Example

–
2
–
2
0
1
5
-1
0
-2
2
–
S
se
m
d
o
m

–

7/34

S = (T,C, V, atr ) where

• (basic) types T and classes C (both finite),

• typed attributes V , τ from T , or C0,1 or C∗, for some C ∈ C ,

• atr : C → 2V mapping classes to attributes.

Example:



That’d Be Too Simple
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
o
ck

–

6/27

〈〈Stereotype1, . . . ,Stereotypen〉〉

Package::C
+ r : C0,1 = expr

s : D∗ {ordered}

− v : Int = 27
w : Float {readOnly}

A
y : Int B

{A}

D
x : Int



What Do We Want / Have to Cover?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
o
ck

–

7/27

A class
〈〈Stereotype1, . . . ,Stereotypen〉〉

Package::C
+ r : C0,1 = expr

s : D∗ {ordered}

− v : Int = 27
w : Float {readOnly}

A
y : Int B

{A}

D
x : Int

• has a set of stereotypes,

• has a name,

• belongs to a package,

• can be abstract,

• can be active,

• has a set of attributes,

• has a set of operations.

Each attribute has

• a visibility,

• a name, a type,

• a multiplicity, an order,

• an initial value, and

• a set of properties, such as readOnly, ordered, etc.

Wanted: places in the signature to represent the information from the picture.



Extended Signature

–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

8/27



Extended Signature
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

9/27

Definition. An (Extended) Object System Signature is a quadruple
S = (T,C, V, atr ) where

• T is a set of (basic) types,

• C is a finite set of classes

• V is a finite set of attributes

• atr : C → 2V maps each class to its set of attributes.



Extended Signature
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

9/27

Definition. An (Extended) Object System Signature is a quadruple
S = (T,C, V, atr ) where

• T is a set of (basic) types,

• C is a finite set of classes 〈C, SC , a, t〉 where

• V is a finite set of attributes

• atr : C → 2V maps each class to its set of attributes.



Extended Signature
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

9/27

Definition. An (Extended) Object System Signature is a quadruple
S = (T,C, V, atr ) where

• T is a set of (basic) types,

• C is a finite set of classes 〈C, SC , a, t〉 where

• SC is a finite (possibly empty) set of stereotypes,

• a ∈ B is a boolean flag indicating whether C is abstract,

• t ∈ B is a boolean flag indicating whether C is active,

• V is a finite set of attributes

• atr : C → 2V maps each class to its set of attributes.



Extended Signature
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

9/27

Definition. An (Extended) Object System Signature is a quadruple
S = (T,C, V, atr ) where

• T is a set of (basic) types,

• C is a finite set of classes 〈C, SC , a, t〉 where

• SC is a finite (possibly empty) set of stereotypes,

• a ∈ B is a boolean flag indicating whether C is abstract,

• t ∈ B is a boolean flag indicating whether C is active,

• V is a finite set of attributes 〈v : T, ξ, expr
0
, Pv〉 where

• atr : C → 2V maps each class to its set of attributes.



Extended Signature
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

9/27

Definition. An (Extended) Object System Signature is a quadruple
S = (T,C, V, atr ) where

• T is a set of (basic) types,

• C is a finite set of classes 〈C, SC , a, t〉 where

• SC is a finite (possibly empty) set of stereotypes,

• a ∈ B is a boolean flag indicating whether C is abstract,

• t ∈ B is a boolean flag indicating whether C is active,

• V is a finite set of attributes 〈v : T, ξ, expr
0
, Pv〉 where

• T is a type from T , or C0,1, C∗ for some C ∈ C ,

• ξ ∈ {public
︸ ︷︷ ︸

:=+

, private
︸ ︷︷ ︸

:=−

, protected
︸ ︷︷ ︸

:=#

, package
︸ ︷︷ ︸

:=∼

} is the visibility,

• an initial value expression expr0 given as a word from a language for

initial value expressions, e.g. OCL, or C++ in the Rhapsody tool,

• a finite (possibly empty) set of properties Pv.

• atr : C → 2V maps each class to its set of attributes.



Extended Signature
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

9/27

Definition. An (Extended) Object System Signature is a quadruple
S = (T,C, V, atr ) where

• T is a set of (basic) types,

• C is a finite set of classes 〈C, SC , a, t〉 where

• SC is a finite (possibly empty) set of stereotypes,

• a ∈ B is a boolean flag indicating whether C is abstract,

• t ∈ B is a boolean flag indicating whether C is active,

• V is a finite set of attributes 〈v : T, ξ, expr
0
, Pv〉 where

• T is a type from T , or C0,1, C∗ for some C ∈ C ,

• ξ ∈ {public
︸ ︷︷ ︸

:=+

, private
︸ ︷︷ ︸

:=−

, protected
︸ ︷︷ ︸

:=#

, package
︸ ︷︷ ︸

:=∼

} is the visibility,

• an initial value expression expr0 given as a word from a language for

initial value expressions, e.g. OCL, or C++ in the Rhapsody tool,

• a finite (possibly empty) set of properties Pv.

• atr : C → 2V maps each class to its set of attributes.

We use SC to denote the set
⋃

C∈C
SC of stereotypes in S .



Conventions
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

10/27

• We write 〈C, SC , a, t〉 if we want to refer to all aspects of C.

• If the new aspects are irrelevant (for a given context),
we simply write C i.e. old definitions are still valid.

• We write 〈v : T, ξ, expr
0
, Pv〉 if we want to refer to all aspects of v.

• Write only v : T or v if details are irrelevant.



Conventions
–
6
–
2
0
1
5
-1
1
-1
2
–
S
ex
ts
ig

–

10/27

• We write 〈C, SC , a, t〉 if we want to refer to all aspects of C.

• If the new aspects are irrelevant (for a given context),
we simply write C i.e. old definitions are still valid.

• We write 〈v : T, ξ, expr
0
, Pv〉 if we want to refer to all aspects of v.

• Write only v : T or v if details are irrelevant.

• Note:
All definitions we have up to now principally still apply as they are stated in
terms of, e.g., C ∈ C — which still has a meaning with the extended view.

For instance, system states and object diagrams will remain mostly unchanged.

• The other way round: most of the newly added aspects do not contribute to
the constitution of system states or object diagrams.



Mapping UML Class Diagrams to Extended Signatures

–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

11/27



From Class Boxes to Extended Signatures
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

12/27

A class box n induces an (extended) signature class as follows:

n: 〈〈S1, . . . , Sk 〉〉
C

ξ1 v1 : T1 = expr1
0
{P1,1, . . . , P1,m1

}
...

ξℓ vℓ : Tℓ = expr ℓ
0
{Pℓ,1, . . . , Pℓ,mℓ

}



From Class Boxes to Extended Signatures
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

12/27

A class box n induces an (extended) signature class as follows:

n: 〈〈S1, . . . , Sk 〉〉
C

ξ1 v1 : T1 = expr1
0
{P1,1, . . . , P1,m1

}
...

ξℓ vℓ : Tℓ = expr ℓ
0
{Pℓ,1, . . . , Pℓ,mℓ

}

 

C(n) := 〈C, {S1, . . . , Sk}, a(n), t(n)〉

V (n) := {〈v1 : T1, ξ1, expr
1

0
, {P1,1, . . . , P1,m1

}〉, . . . , 〈vℓ : Tℓ, ξℓ, expr
ℓ
0
, {Pℓ,1, . . . , Pℓ,mℓ

}〉}

atr(n) := {C 7→ {v1, . . . , vℓ}}

where

• “abstract” is determined by the font:

a(n) =

{

true , if n = C or n = C {A}

false , otherwise

• “active” is determined by the frame:

t(n) =

{

true , if n = C or n = C

false , otherwise



Example
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

13/27

〈〈S1, . . . , Sk 〉〉
C

ξ1 v1 : T1 = expr10 {P1,1, . . . , P1,m1
}

...
ξℓ vℓ : Tℓ = expr ℓ0 {Pℓ,1, . . . , Pℓ,mℓ

}

 

C(n) := 〈C, {S1, . . . , Sk}, a(n), t(n)〉

V (n) := {〈v1 : T1, ξ1, expr
1
0, {P1,1, . . . , P1,m1

}〉, . . . ,

〈vℓ : Tℓ, ξℓ, expr
ℓ
0, {Pℓ,1, . . . , Pℓ,mℓ

}〉}

atr(n) := {C 7→ {v1, . . . , vℓ}}

〈〈Stereotype1, . . . , Stereotypen〉〉

Package::C
+ r : C0,1 = expr

s : D∗ {ordered}

− v : Int = 27
w : Float {readOnly}

A
y : Int B

{A}

D
x : Int



What If Things Are Missing?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

14/27

It depends.

• What does the standard say? (OMG, 2011a, 121)

“Presentation Options.

The type, visibility, default, multiplicity, property string may be

suppressed from being displayed, even if there are values in the model.”



What If Things Are Missing?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

14/27

It depends.

• What does the standard say? (OMG, 2011a, 121)

“Presentation Options.

The type, visibility, default, multiplicity, property string may be

suppressed from being displayed, even if there are values in the model.”

• Visibility: There is no “no visibility” — an attribute has a visibility in the
(extended) signature.

Some (and we) assume public as default, but conventions may vary.



What If Things Are Missing?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

14/27

It depends.

• What does the standard say? (OMG, 2011a, 121)

“Presentation Options.

The type, visibility, default, multiplicity, property string may be

suppressed from being displayed, even if there are values in the model.”

• Visibility: There is no “no visibility” — an attribute has a visibility in the
(extended) signature.

Some (and we) assume public as default, but conventions may vary.

• Initial value: some assume it given by domain (such as “leftmost value”, but
what is “leftmost” of Z?).
Some (and we) understand non-deterministic initialisation if not given.



What If Things Are Missing?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

14/27

It depends.

• What does the standard say? (OMG, 2011a, 121)

“Presentation Options.

The type, visibility, default, multiplicity, property string may be

suppressed from being displayed, even if there are values in the model.”

• Visibility: There is no “no visibility” — an attribute has a visibility in the
(extended) signature.

Some (and we) assume public as default, but conventions may vary.

• Initial value: some assume it given by domain (such as “leftmost value”, but
what is “leftmost” of Z?).
Some (and we) understand non-deterministic initialisation if not given.

• Properties: probably safe to assume ∅ if not given at all.



Example Cont’d
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

15/27

〈〈S1, . . . , Sk 〉〉
C

ξ1 v1 : T1 = expr10 {P1,1, . . . , P1,m1
}

...
ξℓ vℓ : Tℓ = expr ℓ0 {Pℓ,1, . . . , Pℓ,mℓ

}

 

C(n) := 〈C, {S1, . . . , Sk}, a(n), t(n)〉

V (n) := {〈v1 : T1, ξ1, expr
1
0, {P1,1, . . . , P1,m1

}〉, . . . ,

〈vℓ : Tℓ, ξℓ, expr
ℓ
0, {Pℓ,1, . . . , Pℓ,mℓ

}〉}

atr(n) := {C 7→ {v1, . . . , vℓ}}

〈〈Stereotype1, . . . , Stereotypen〉〉

Package::C
+ r : C0,1 = expr

s : D∗ {ordered}

− v : Int = 27
w : Float {readOnly}

A
y : Int B

{A}

D
x : Int



From Class Diagrams to Extended Signatures
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

16/27

• We view a class diagram CD as a graph with nodes {n1, . . . , nN}
(each “class rectangle” is a node).

• C (CD) := {C(ni) | 1 ≤ i ≤ N}

• V (CD) :=
⋃N

i=1
V (ni)

• atr(CD) :=
⋃N

i=1
atr(ni)



From Class Diagrams to Extended Signatures
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

16/27

• We view a class diagram CD as a graph with nodes {n1, . . . , nN}
(each “class rectangle” is a node).

• C (CD) := {C(ni) | 1 ≤ i ≤ N}

• V (CD) :=
⋃N

i=1
V (ni)

• atr(CD) :=
⋃N

i=1
atr(ni)

• In a UML model, we can have finitely many class diagrams,

C D = {CD1, . . . , CDk},

which induce the following signature:

S (C D) =

(

T ,

k
⋃

i=1

C (CDi),
k
⋃

i=1

V (CDi),
k
⋃

i=1

atr(CDi)

)

.

(Assuming T given. In “reality” (i.e. in full UML), we can introduce types in class
diagrams, the class diagram then contributes to T . Example: enumeration types.)



Is the Mapping a Function?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

17/27

Question: Is S (CD) well-defined?



Is the Mapping a Function?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

17/27

Question: Is S (CD) well-defined?

There are two possible sources for problems:

(1) A class C may appear in multiple class diagrams:

(i)

C
v : Int

CD1

C
w : Int

CD2

(ii)

C
v : Int

CD1

C
v : Bool

CD2



Is the Mapping a Function?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

17/27

Question: Is S (CD) well-defined?

There are two possible sources for problems:

(1) A class C may appear in multiple class diagrams:

(i)

C
v : Int

CD1

C
w : Int

CD2

(ii)

C
v : Int

CD1

C
v : Bool

CD2

Simply forbid the case (ii) — easy syntactical check on diagram.



Is the Mapping a Function?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

18/27

(2) An attribute v may appear in multiple classes with different type:

C
v : Bool

D
v : Int

Two approaches:

• Require unique attribute names.
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

C::v or D::v

depending on the context. (C::v : Bool and D::v : Int are then unique.)



Is the Mapping a Function?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

m
a
p
–

18/27

(2) An attribute v may appear in multiple classes with different type:

C
v : Bool

D
v : Int

Two approaches:

• Require unique attribute names.
This requirement can easily be established (implicitly, behind the scenes) by
viewing v as an abbreviation for

C::v or D::v

depending on the context. (C::v : Bool and D::v : Int are then unique.)

• Subtle, formalist’s approach: observe that

〈v : Bool , . . . 〉 and 〈v : Int , . . . 〉

are different things in V . We don’t follow that path. . .



Class Diagram Semantics

–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

19/27



Semantics
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

20/27

The semantics of a set of class diagrams C D is the induced signature S (C D).



Semantics
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

20/27

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).



Semantics
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

20/27

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).

• Do we need to redefine/extend D?



Semantics
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

20/27

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type T , i.e. the set D(T ), would be

determined by the class diagram, and not free for choice.)



Semantics
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

20/27

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type T , i.e. the set D(T ), would be

determined by the class diagram, and not free for choice.)

• What is the effect on ΣD
S
?



Semantics
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

20/27

The semantics of a set of class diagrams C D is the induced signature S (C D).

The signature induces a set of system states ΣD
S

(given a structure D).

• Do we need to redefine/extend D? No.

(Would be different if we considered the definition of enumeration types in class

diagrams. Then the domain of an enumeration type T , i.e. the set D(T ), would be

determined by the class diagram, and not free for choice.)

• What is the effect on ΣD
S
? Little.

For now, we only remove abstract class instances, i.e.

σ : D(C ) 9 (V 9 (D(T ) ∪ D(C∗)))

is now only called system state if and only if, for all 〈C, SC , 1, t〉 ∈ C ,

dom(σ) ∩ D(C) = ∅.

With a = 0 as default “abstractness”, the earlier definitions apply directly.
(We’ll revisit this when discussing inheritance.)



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active:

• Stereotypes:



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes:



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value expression:

• Visibility:

• Properties:



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value expression: not represented in σ.

Later: provides an initial value as effect of “creation action”.

• Visibility:

• Properties:



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value expression: not represented in σ.

Later: provides an initial value as effect of “creation action”.

• Visibility: not represented in σ.

Later: viewed as additional typing information for well-formedness of actions; and

with inheritance.

• Properties:



What About The Rest?
–
6
–
2
0
1
5
-1
1
-1
2
–
S
cd

se
m

–

21/27

• Classes:

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Stereotypes: in a minute.

• Attributes:

• Initial value expression: not represented in σ.

Later: provides an initial value as effect of “creation action”.

• Visibility: not represented in σ.

Later: viewed as additional typing information for well-formedness of actions; and

with inheritance.

• Properties: such as readOnly, ordered, composite (Deprecated in the standard.)

• readOnly — later treated similar to visibility.

• ordered — not considered in our UML fragment (→ sets vs. sequences).

• composite — cf. lecture on associations.



Stereotypes

–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

22/27



Stereotypes as Labels or Tags
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

23/27

• What are Stereotypes?

• Not represented in system states.

• Not contributing to typing rules / well-formedness.



Stereotypes as Labels or Tags
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

23/27

• What are Stereotypes?

• Not represented in system states.

• Not contributing to typing rules / well-formedness.

• Oestereich (2006):

View stereotypes as (additional) “labelling” (“tags”) or as “grouping”.

• Useful for documentation and model-driven development, e.g. code-generation:

• Documentation: e.g. layers of an architecture.

Sometimes, packages (cf. OMG (2011a,b)) are sufficient and “right”.

• Model Driven Architecture (MDA): later.



Example: Stereotypes for Documentation
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

24/27

Core

View

Application/Qt

Trace

sort

move

filter

jump

zoom

View/Qt

• Example: Timing Diagram Viewer
Schumann et al. (2008)

• Architecture has four layers:

• core, data layer

• abstract view layer

• toolkit-specific view layer/widget

• application using widget



Example: Stereotypes for Documentation
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

24/27

Core

View

Application/Qt

Trace

sort

move

filter

jump

zoom

View/Qt

• Example: Timing Diagram Viewer
Schumann et al. (2008)

• Architecture has four layers:

• core, data layer

• abstract view layer

• toolkit-specific view layer/widget

• application using widget



Example: Stereotypes for Documentation
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

24/27

Core

View

Application/Qt

Trace

sort

move

filter

jump

zoom

View/Qt

• Example: Timing Diagram Viewer
Schumann et al. (2008)

• Architecture has four layers:

• core, data layer

• abstract view layer

• toolkit-specific view layer/widget

• application using widget

Stereotype “=” layer “=” colour.



Other Examples
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

25/27

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.



Other Examples
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

25/27

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.



Other Examples
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

25/27

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.



Other Examples
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

25/27

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.



Other Examples
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

25/27

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.



Other Examples
–
6
–
2
0
1
5
-1
1
-1
2
–
S
st
er
eo

–

25/27

• Use stereotypes ‘Team1’, ‘Team2’, ‘Team3’ and assign stereotype Teami to class C if
Teami is responsible for class C.

• Use stereotypes to label classes with licensing information (e.g., LGPL vs. proprietary).

• Use stereotypes ‘ServerA’, ‘ServerB ’ to indicate where objects should be stored.

• Use stereotypes to label classes with states in the development process like “under
development”, “submitted for testing”, “accepted”.

• etc. etc.

Necessary: a common idea of what each stereotype stands for.

(To be defined / agreed on by the team, not the job of the UML consortium.)



References

–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

26/27



References
–
6
–
2
0
1
5
-1
1
-1
2
–
m
a
in

–

27/27

Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8. Auflage. Oldenbourg, 8. edition.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical
documentation, version 1.0. Technical report, Carl von Ossietzky Universität Oldenburg und
OFFIS.


	Course Map
	Contents & Goals
	UML Class Diagrams: Stocktaking
	Recall: Signature vs. Class Diagram
	That'd Be Too Simple
	What Do We Want / Have to Cover?

	Extended Signature
	Extended Signature
	Conventions

	Mapping UML Class Diagrams to Extended Signatures
	From Class Boxes to Extended Signatures
	Example
	What If Things Are Missing?
	Example Cont'd
	From Class Diagrams to Extended Signatures
	Is the Mapping a Function?
	Is the Mapping a Function?

	Class Diagram Semantics
	Semantics
	What About The Rest?

	Stereotypes
	Stereotypes as Labels or Tags
	Example: Stereotypes for Documentation
	Other Examples

	References
	References


