## A Fixpoint Antichain Algorithm A faster algorithm to check universality of NFA

Albert-Ludwigs-Universität Freiburg

Felix Freyland Seminar on Automata Theory at the chair of Software Engineering. Winter semester 2016/2017

### **Basic Problem**

Universality of NFA Classical subset construction

### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

### Antichain Algorithm to check universality

#### **Basic Problem**

Universality of NFA Classical subset construction

### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

#### Antichain Algorithm to check universality

## Basic Problem Universality of NFA

Classical subset construction

### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

#### Antichain Algorithm to check universality

## Universality of NFA

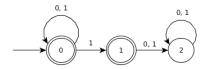
## Universality

An NFA  $\mathscr{A} = (Loc, Init, Fin, \delta, \Sigma)$  is universal  $\Leftrightarrow L(\mathscr{A}) = \Sigma^*$  $\mathscr{A}$  accepts every finite word over  $\Sigma^*$ 

## Universality of NFA

## Universality

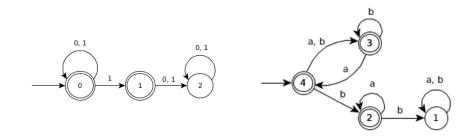
An NFA  $\mathscr{A} = (Loc, Init, Fin, \delta, \Sigma)$  is universal  $\Leftrightarrow L(\mathscr{A}) = \Sigma^*$  $\mathscr{A}$  accepts every finite word over  $\Sigma^*$ 



## Universality of NFA

## Universality

An NFA  $\mathscr{A} = (Loc, Init, Fin, \delta, \Sigma)$  is universal  $\Leftrightarrow L(\mathscr{A}) = \Sigma^*$  $\mathscr{A}$  accepts every finite word over  $\Sigma^*$ 



### Basic Problem Universality of NFA Classical subset construction

#### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

### Antichain Algorithm to check universality

## Classical subset construction algorithm

- Consider NFA *A* with *n* states.
- Build corresponding DFA  $\mathscr{A}'$  with  $2^n$  states.
- Traverse the DFA  $\mathscr{A}'$  starting in {*Init*}.
- If a non accepting state is found, *A*′ hence *A* is **not** universal.
- **Problem:** Exponential blow-up of the set of states.

Basic Problem Universality of NFA Classical subset construction

#### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

#### Antichain Algorithm to check universality

Basic Problem Universality of NFA Classical subset construction

## Preliminaries Predecessors on state sets

Lattice of Antichains A monotone predecessor function on Antichains

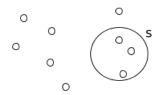
#### Antichain Algorithm to check universality

## Definition

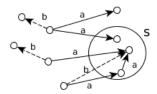
### Definition



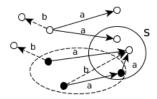
### Definition



### Definition

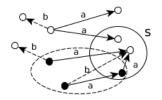


### Definition



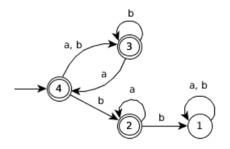
## Definition

Consider NFA  $\mathscr{A} = (Loc, Init, Fin, \delta, \Sigma)$ For  $s \subseteq Loc$  we define:  $cpre_{\sigma}^{\mathscr{A}}(s) = \{I \in Loc \mid \forall I' \in Loc : \delta(I, \sigma, I') \Rightarrow I' \in s\}$ 

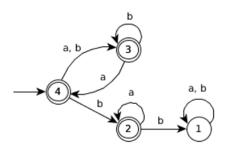


Thus  $cpre_a^{\mathscr{A}}(s)$  contains all states that with letter *a* have a transition to some state in *s* and nowhere else.

# $cpre^{\mathscr{A}}_{\sigma}(s)$ and $post^{\mathscr{A}}_{\sigma}(s)$

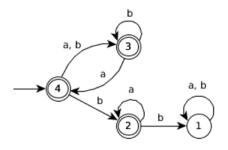


$${\it cpre}_{\sigma}^{\mathscr{A}}(s)$$
 and  ${\it post}_{\sigma}^{\mathscr{A}}(s)$ 



Example 
$$cpre_{\sigma}^{\mathscr{A}}(s)$$
:  
 $cpre_{a}^{\mathscr{A}}(\{1\}) = \{1\}$ 

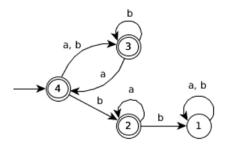
$${\it cpre}_{\sigma}^{\mathscr{A}}(s)$$
 and  ${\it post}_{\sigma}^{\mathscr{A}}(s)$ 



# Example $cpre_{\sigma}^{\mathscr{A}}(s)$ :

•  $cpre_a^{\mathscr{A}}(\{1\}) = \{1\}$ •  $cpre_b^{\mathscr{A}}(\{1\}) = \{1,2\}$ 

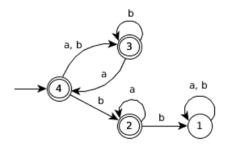
$${\it cpre}_{\sigma}^{\mathscr{A}}(s)$$
 and  ${\it post}_{\sigma}^{\mathscr{A}}(s)$ 



## Example $cpre_{\sigma}^{\mathscr{A}}(s)$ :

■  $cpre_a^{\mathscr{A}}(\{1\}) = \{1\}$ ■  $cpre_b^{\mathscr{A}}(\{1\}) = \{1,2\}$ ■  $cpre_a^{\mathscr{A}}(\{1,2\}) = \{1,2\}$ 

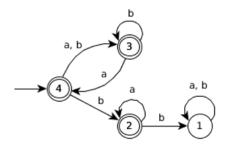
$${\it cpre}_{\sigma}^{\mathscr{A}}(s)$$
 and  ${\it post}_{\sigma}^{\mathscr{A}}(s)$ 



Example 
$$cpre_{\sigma}^{\mathscr{A}}(s)$$
:

 $cpre_{a}^{\mathscr{A}}(\{1\}) = \{1\}$ cpre\_{b}^{\mathscr{A}}(\{1\}) = \{1,2\} cpre\_{a}^{\mathscr{A}}(\{1,2\}) = \{1,2\} cpre\_{b}^{\mathscr{A}}(\{1,2\}) = \{1,2\}

$${\it cpre}_{\sigma}^{\mathscr{A}}(s)$$
 and  ${\it post}_{\sigma}^{\mathscr{A}}(s)$ 



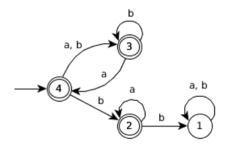
Example  $\overline{cpre_{\sigma}^{\mathscr{A}}(s)}$ :

 $cpre_{a}^{\mathscr{A}}(\{1\}) = \{1\}$   $cpre_{b}^{\mathscr{A}}(\{1\}) = \{1,2\}$   $cpre_{a}^{\mathscr{A}}(\{1,2\}) = \{1,2\}$  $cpre_{b}^{\mathscr{A}}(\{1,2\}) = \{1,2\}$ 

Example  $post_{\sigma}^{\mathscr{A}}(s)$ :

$$post_a^{\mathscr{A}}(\{1,2\}) = \{1,2\}$$

$${\it cpre}_{\sigma}^{\mathscr{A}}(s)$$
 and  ${\it post}_{\sigma}^{\mathscr{A}}(s)$ 



Example  $cpre_{\sigma}^{\mathscr{A}}(s)$ :

 $cpre_{a}^{\mathscr{A}}(\{1\}) = \{1\}$   $cpre_{b}^{\mathscr{A}}(\{1\}) = \{1,2\}$   $cpre_{a}^{\mathscr{A}}(\{1,2\}) = \{1,2\}$  $cpre_{b}^{\mathscr{A}}(\{1,2\}) = \{1,2\}$ 

Example  $post_{\sigma}^{\mathscr{A}}(s)$ :  $post_{a}^{\mathscr{A}}(\{1,2\}) = \{1,2\}$  $post_{b}^{\mathscr{A}}(\{1,2\}) = \{1\}$ 

Basic Problem Universality of NFA Classical subset construction

Preliminaries Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

## Definition

Let *L* denote the set of all antichains over  $2^{Loc}$  $\forall q,q' \in L : q \sqsubseteq q' \Leftrightarrow \forall s \in q \exists s' \in q' : s \subseteq s'$ 

## Definition

Let *L* denote the set of all antichains over  $2^{Loc}$  $\forall q,q' \in L : q \sqsubseteq q' \Leftrightarrow \forall s \in q \exists s' \in q' : s \subseteq s'$ 

•  $q \sqsubseteq q'$  iff every  $s \in q$  is subset of some  $s' \in q'$ 

## Definition

Let *L* denote the set of all antichains over  $2^{Loc}$  $\forall q,q' \in L : q \sqsubseteq q' \Leftrightarrow \forall s \in q \exists s' \in q' : s \subseteq s'$ 

lacksquare  $q \sqsubseteq q'$  iff every  $s \in q$  is subset of some  $s' \in q'$ 

 $\blacksquare$   $\sqsubseteq$  is a partial order (reflexive, transitiv, antisymmetric)

## Definition

Let *L* denote the set of all antichains over  $2^{Loc}$  $\forall q,q' \in L : q \sqsubseteq q' \Leftrightarrow \forall s \in q \exists s' \in q' : s \subseteq s'$ 

•  $q \sqsubseteq q'$  iff every  $s \in q$  is subset of some  $s' \in q'$ 

 $\blacksquare$   $\sqsubseteq$  is a partial order (reflexive, transitiv, antisymmetric)

### Example

Loc = 
$$\{1, 2, 3, 4\}$$

## Definition

Let *L* denote the set of all antichains over  $2^{Loc}$  $\forall q,q' \in L : q \sqsubseteq q' \Leftrightarrow \forall s \in q \exists s' \in q' : s \subseteq s'$ 

•  $q \sqsubseteq q'$  iff every  $s \in q$  is subset of some  $s' \in q'$ 

 $\blacksquare$   $\sqsubseteq$  is a partial order (reflexive, transitiv, antisymmetric)

### Example

$$Loc = \{1, 2, 3, 4\}$$
$$\{\{1\}, \{2\}, \{3\}\} \sqsubseteq \{\{1, 2\}, \{2, 3\}\}$$

## Definition

For two antichains  $q,q' \in L$  the least upper bound (lub) is:  $q \sqcup q' = Max(\{s \mid s \in q \lor s \in q'\})$ 

### Definition

For two antichains  $q,q' \in L$  the least upper bound (lub) is:  $q \sqcup q' = Max(\{s \mid s \in q \lor s \in q'\})$ 

■ Thus the antichain *q* ⊔ *q*′ is the maximum (with regard to set inclusion order) of the union of the two antichains *q* and *q*′

### Definition

For two antichains  $q,q' \in L$  the least upper bound (lub) is:  $q \sqcup q' = Max(\{s \mid s \in q \lor s \in q'\})$ 

Thus the antichain q ⊔ q' is the maximum (with regard to set inclusion order) of the union of the two antichains q and q'

### Example

$$q = \{\{1\}, \{2\}, \{3\}\}, q' = \{\{1, 2\}\}$$

### Definition

For two antichains  $q,q' \in L$  the least upper bound (lub) is:  $q \sqcup q' = Max(\{s \mid s \in q \lor s \in q'\})$ 

Thus the antichain q ⊔ q' is the maximum (with regard to set inclusion order) of the union of the two antichains q and q'

### Example

$$q = \{\{1\}, \{2\}, \{3\}\}, q' = \{\{1,2\}\}\$$
$$q \sqcup q' = Max(\{\{1\}, \{2\}, \{3\}, \{1,2\}\}) = \{\{1,2\}, \{3\}\}\$$

## A Lattice on Antichains

■ We have a partial order  $(L, \sqsubseteq)$  on antichains

# A Lattice on Antichains

- We have a partial order  $(L, \sqsubseteq)$  on antichains
- We have a least upper bound (lub) for two antichains

# A Lattice on Antichains

- We have a partial order  $(L, \sqsubseteq)$  on antichains
- We have a least upper bound (lub) for two antichains
- A greatest lower bound (glb) can suitably be defined, such... that we get a lattice on antichains.

# A Lattice on Antichains

- We have a partial order  $(L, \sqsubseteq)$  on antichains
- We have a least upper bound (lub) for two antichains
- A greatest lower bound (glb) can suitably be defined, such... that we get a lattice on antichains.
- A lattice is a partially ordered set, where every two elements have a lub and a glb

# A Lattice on Antichains

- We have a partial order  $(L, \sqsubseteq)$  on antichains
- We have a least upper bound (lub) for two antichains
- A greatest lower bound (glb) can suitably be defined, such... that we get a lattice on antichains.
- A lattice is a partially ordered set, where every two elements have a lub and a glb
- Lattice property is needed later on for correctness of the algorithm

### Content

Basic Problem Universality of NFA Classical subset construction

### Preliminaries

Predecessors on state sets Lattice of Antichains

#### A monotone predecessor function on Antichains

#### Antichain Algorithm to check universality

The Algorithm at work Antichain Algorithm vs. Classical

#### Definition

The concept of predecessors is extended to antichains by:  $CPre^{\mathscr{A}}: L \to L$  $CPre^{\mathscr{A}}(q) = Max(\{s \mid \exists s' \in q \exists \sigma \in \Sigma : s = cpre_{\sigma}^{\mathscr{A}}(s')\})$ 

#### Definition

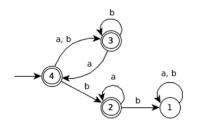
The concept of predecessors is extended to antichains by:  $CPre^{\mathscr{A}} : L \to L$  $CPre^{\mathscr{A}}(q) = Max(\{s \mid \exists s' \in q \exists \sigma \in \Sigma : s = cpre_{\sigma}^{\mathscr{A}}(s')\})$ 

 $\blacksquare \text{ Monotonicity: } q \sqsubseteq q' \Rightarrow CPre^{\mathscr{A}}(q) \sqsubseteq CPre^{\mathscr{A}}(q')$ 

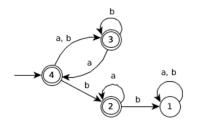
#### Definition

The concept of predecessors is extended to antichains by:  $CPre^{\mathscr{A}}: L \to L$  $CPre^{\mathscr{A}}(q) = Max(\{s \mid \exists s' \in q \exists \sigma \in \Sigma : s = cpre_{\sigma}^{\mathscr{A}}(s')\})$ 

- Monotonicity:  $q \sqsubseteq q' \Rightarrow CPre^{\mathscr{A}}(q) \sqsubseteq CPre^{\mathscr{A}}(q')$
- follows from subset inclusion order and Def. of  $cpre_{\sigma}^{\mathscr{A}}(s)$



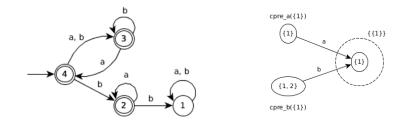
### Example: $CPre^{\mathscr{A}}(\{\{1\}\})$





### Example: $CPre^{\mathscr{A}}(\{\{1\}\})$

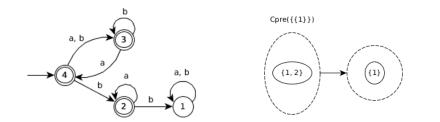
• we start with the antichain  $\{\{1\}\}$ 



### Example: $CPre^{\mathscr{A}}(\{\{1\}\})$

• we start with the antichain  $\{\{1\}\}$ • calculate  $cpre_a(\{1\}) = \{1\}$  and  $cpre_b(\{1\}) = \{1,2\}$ 

February 2017



### Example: $CPre^{\mathscr{A}}(\{\{1\}\})$

we start with the antichain {{1}}
 calculate *cpre<sub>a</sub>*({1}) = {1} and *cpre<sub>b</sub>*({1}) = {1,2}
 *CPre<sup>A</sup>*({{1}}) = Max({{1,2},{1}}) = {{1,2}}

### Content

#### **Basic Problem**

Universality of NFA Classical subset construction

#### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

#### Antichain Algorithm to check universality

The Algorithm at work Antichain Algorithm vs. Classical

### Content

#### **Basic Problem**

Universality of NFA Classical subset construction

#### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

### Antichain Algorithm to check universality

The Algorithm at work Antichain Algorithm vs. Classical

Start with antichain  $F = \{\overline{Fin}\}$  and set *Frontier* = *F* 

- Start with antichain  $F = \{\overline{Fin}\}$  and set *Frontier* = *F*
- Repeatedly compute  $F = F \sqcup CPre^{\mathscr{A}}(Frontier)$  in a loop

- Start with antichain  $F = \{\overline{Fin}\}$  and set Frontier = F
- Repeatedly compute  $F = F \sqcup CPre^{\mathscr{A}}(Frontier)$  in a loop
- Tarski's Fixpoint Theorem implies that the monotone function CPre<sup>A</sup>(q) on a complete lattice has a least fixpoint

- Start with antichain  $F = \{\overline{Fin}\}$  and set Frontier = F
- Repeatedly compute  $F = F \sqcup CPre^{\mathscr{A}}(Frontier)$  in a loop
- Tarski's Fixpoint Theorem implies that the monotone function CPre<sup>A</sup>(q) on a complete lattice has a least fixpoint
- Thus after some iteration n, F stops growing, i.e.  $F_n = F_{n-1}$

- Start with antichain  $F = \{\overline{Fin}\}$  and set Frontier = F
- Repeatedly compute  $F = F \sqcup CPre^{\mathscr{A}}(Frontier)$  in a loop
- Tarski's Fixpoint Theorem implies that the monotone function CPre<sup>A</sup>(q) on a complete lattice has a least fixpoint
- Thus after some iteration *n*, *F* stops growing, i.e.  $F_n = F_{n-1}$

Iff  $\{Init\} \sqsubseteq F \mathscr{A}$  is not universal.



#### Initialization

We start with the antichain of the set of non accepting states



#### Initialization

We start with the antichain of the set of non accepting states
 *F* ← {*Fin*}



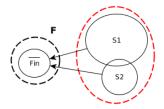
#### Initialization

We start with the antichain of the set of non accepting states *F* ← {*Fin*} *Frontier* ← *F*



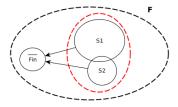
#### **First Iteration**

**s**<sub>1</sub>,  $s_2$ ,  $s_3$  are  $cpre_{\sigma}(s)$  for all  $\sigma$  and all  $s \in$  *Frontier* 



#### **First Iteration**

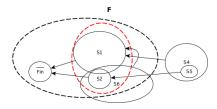
 $s_1, s_2, s_3$  are  $cpre_{\sigma}(s)$  for all  $\sigma$  and all  $s \in$  Frontier Frontier =  $CPre^{\mathscr{A}}(Frontier) = \{s_1, s_2\}$ 



#### **First Iteration**

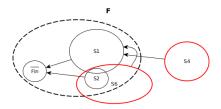
s<sub>1</sub>,s<sub>2</sub>,s<sub>3</sub> are cpre<sub>σ</sub>(s) for all σ and all s ∈ Frontier
 Frontier = CPre<sup>𝒜</sup>(Frontier) = {s<sub>1</sub>,s<sub>2</sub>}
 F ← F ⊔ Frontier

February 2017



#### Second Iteration

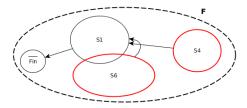
 $s_4, s_5, s_6$  are *cpre*(s) for all  $\sigma$  and all  $s \in$  *Frontier* 



#### Second Iteration

■  $s_4, s_5, s_6$  are *cpre*(s) for all σ and all  $s \in$  *Frontier* ■ *Frontier* = *CPre*<sup>A</sup>(*Frontier*) = { $s_4, s_6$ }

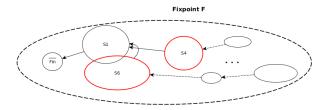
February 2017



#### Second Iteration

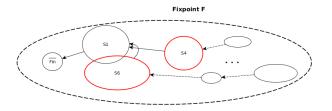
■  $s_4, s_5, s_6$  are cpre(s) for all  $\sigma$  and all  $s \in$  Frontier ■ Frontier =  $CPre^{\mathscr{A}}(Frontier) = \{s_4, s_6\}$ ■  $F \leftarrow F \sqcup Frontier$ 

February 2017



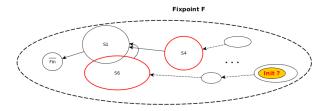
#### **Termination**

The Algorithm computes a series of antichains  $q_0 \sqsubseteq q_1 \sqsubseteq \cdots \sqsubseteq q_n = \mathscr{F}$  where  $q_i = CPre^{\mathscr{A}}(q_{i-1}) \sqcup \{\overline{Fin}\}$ 



#### Termination

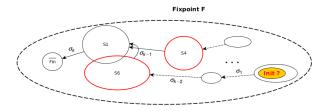
 The Algorithm computes a series of antichains q<sub>0</sub> ⊆ q<sub>1</sub> ⊆ … ⊆ q<sub>n</sub> = ℱ where q<sub>i</sub> = CPre<sup>𝒜</sup>(q<sub>i-1</sub>) ⊔ {Fin}
 Tarski's Fixpoint Theorem implies that every monotone function on a complete lattice has a least fixpoint *F*.



#### **Termination**

The Algorithm computes a series of antichains
 q<sub>0</sub> ⊆ q<sub>1</sub> ⊆ … ⊆ q<sub>n</sub> = ℱ where q<sub>i</sub> = CPre<sup>A</sup>(q<sub>i-1</sub>) ⊔ {Fin}
 Tarski's Fixpoint Theorem implies that every monotone function

- on a complete lattice has a least fixpoint F.
- $\blacksquare Lang(\mathscr{A}) \neq \Sigma^* \Leftrightarrow \{Init\} \sqsubseteq F$



#### **Termination**

The Algorithm computes a series of antichains  $q_0 \sqsubseteq q_1 \sqsubseteq \cdots \sqsubseteq q_n = \mathscr{F}$  where  $q_i = CPre^{\mathscr{A}}(q_{i-1}) \sqcup \{\overline{Fin}\}$ Tarski's Fixpoint Theorem implies that every monotone function

on a complete lattice has a least fixpoint F.

 $\blacksquare Lang(\mathscr{A}) \neq \Sigma^* \Leftrightarrow \{Init\} \sqsubseteq F$ 

### Content

#### **Basic Problem**

Universality of NFA Classical subset construction

#### Preliminaries

Predecessors on state sets Lattice of Antichains A monotone predecessor function on Antichains

#### Antichain Algorithm to check universality

The Algorithm at work Antichain Algorithm vs. Classical

# Comparison of Classical and Antichain Algorithm

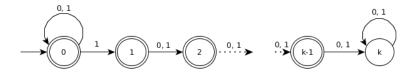
#### Theorem

For the familiy of  $\mathscr{A}_k$ ,  $k \ge 2$  with k + 1 states, the Backward Antichain Algorithm is polynomial in k, whereas the classical subset construction algorithm is exponential in k

# Comparison of Classical and Antichain Algorithm

#### Theorem

For the familiy of  $\mathscr{A}_k$ ,  $k \ge 2$  with k + 1 states, the Backward Antichain Algorithm is polynomial in k, whereas the classical subset construction algorithm is exponential in k

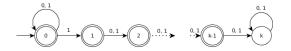


### Classical



### Classical

### Classical

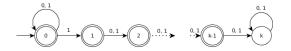


#### Classical

DFA of  $2^{k+1}$  states

February 2017

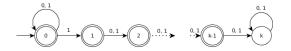
## Classical



#### Classical

- DFA of 2<sup>k+1</sup> states
- $\blacksquare$  2<sup>k</sup> reachable states, which are all accepting.

## Classical



#### Classical

- **DFA** of  $2^{k+1}$  states
- $2^k$  reachable states, which are all accepting.
- Algorithm traverses the tree of 2<sup>k</sup> accepting states

## Classical



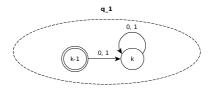
#### Classical

- **DFA** of  $2^{k+1}$  states
- $\blacksquare$  2<sup>k</sup> reachable states, which are all accepting.
- Algorithm traverses the tree of 2<sup>k</sup> accepting states
- runtime is exponential in k



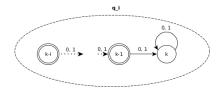
#### Antichain Algorithm

#### Starts with initial antichain $q_0 = \{\{k\}\}$



#### Antichain Algorithm

Starts with initial antichain  $q_0 = \{\{k\}\}\$ In first iteration  $q_1 = CPre(\{\{k\}\}) \sqcup \{\{k\}\} = \{\{k-1,k\}\}\$ 



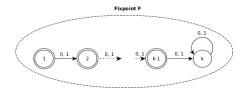
#### Antichain Algorithm

 Starts with initial antichain q₀ = {{k}}
 In first iteration q₁ = CPre({{k}}) ⊔ {{k}} = {{k-1,k}}
 In each iteration: q<sub>i+1</sub> = CPre(q<sub>i</sub>) ⊔ {{l<sub>k</sub>}}, = {{k-(i+1),k-i,...,k}} for i < k</li>



#### Antichain Algorithm

 Starts with initial antichain q₀ = {{k}}
 In first iteration q₁ = CPre({{k}}) ⊔ {{k}} = {{k-1,k}}
 In each iteration: q<sub>i+1</sub> = CPre(q<sub>i</sub>) ⊔ {{l<sub>k</sub>}}, = {{k-(i+1),k-i,...,k}} for i < k</li>



- Starts with initial antichain  $q_0 = \{\{k\}\}$
- In first iteration  $q_1 = CPre(\{\{k\}\}) \sqcup \{\{k\}\} = \{\{k-1,k\}\}$
- In each iteration:
- $q_{i+1} = CPre(q_i) \sqcup \{\{l_k\}\}, = \{\{k (i+1), k i, \dots, k\}\}$  for i < k
- Stops after k iterations with  $q_k = q_{k-1} = \{\{1, \dots, k\}\}$

- Starts with initial antichain  $q_0 = \{\{k\}\}$
- In first iteration  $q_1 = CPre(\{\{k\}\}) \sqcup \{\{k\}\} = \{\{k-1,k\}\}$
- In each iteration:

$$q_{i+1} = CPre(q_i) \sqcup \{\{l_k\}\}, = \{\{k - (i+1), k - i, \dots, k\}\}$$
 for  $i < k$ 

- Stops after k iterations with  $q_k = q_{k-1} = \{\{1, \dots, k\}\}$
- Checks in each Iteration  $\{\{I_0\}\} \sqsubseteq q_i$  in linear time

- Starts with initial antichain  $q_0 = \{\{k\}\}$
- In first iteration  $q_1 = CPre(\{\{k\}\}) \sqcup \{\{k\}\} = \{\{k-1,k\}\}$
- In each iteration:

$$q_{i+1} = CPre(q_i) \sqcup \{\{l_k\}\}, = \{\{k - (i+1), k - i, \dots, k\}\} \text{ for } i < k$$

- Stops after k iterations with  $q_k = q_{k-1} = \{\{1, \dots, k\}\}$
- Checks in each Iteration  $\{\{l_0\}\} \sqsubseteq q_i$  in linear time
- The computation of the *CPre()* in each iteration takes linear time



The Backward antichain fixpoint algorithm is considerably faster for a certain family of NFA

# Conclusion

- The Backward antichain fixpoint algorithm is considerably faster for a certain family of NFA
- Empirical comparisons of antichain and classical algorithm on randomly generated NFA show, that antichain is up to 200 times faster.

# Conclusion

- The Backward antichain fixpoint algorithm is considerably faster for a certain family of NFA
- Empirical comparisons of antichain and classical algorithm on randomly generated NFA show, that antichain is up to 200 times faster.
- The higher the density of accepting states the more advantageous is the antichain approach.

# Conclusion

- The Backward antichain fixpoint algorithm is considerably faster for a certain family of NFA
- Empirical comparisons of antichain and classical algorithm on randomly generated NFA show, that antichain is up to 200 times faster.
- The higher the density of accepting states the more advantageous is the antichain approach.
- Antichain algorithms are also applied to other problems like language inclusion

## References

- M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. (2006). Antichains: A new algorithm for checking universality of finite automata. In Proc. of CAV: Computer Aided Verification, LNCS 4144, pages 17-30. Springer, 2006.
- L. Doyen and J.-F. Raskin. (2010). Antichain Algorithms for Finite Automata. In Proc. of TACAS: Tools and Algorithms for the Construction and Analysis of Systems, LNCS 6015, pages 2-22. Springer, 2010.