
A Fixpoint Antichain Algorithm
A faster algorithm to check universality of NFA

Albert-Ludwigs-Universität Freiburg

Felix Freyland
Seminar on Automata Theory at the chair of Software Engineering.
Winter semester 2016/2017



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 2 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 3 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 4 / 31



Universality of NFA

Universality

An NFA A = (Loc, Init,Fin,δ ,Σ) is universal⇔ L(A ) = Σ∗

A accepts every finite word over Σ∗

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 5 / 31



Universality of NFA

Universality

An NFA A = (Loc, Init,Fin,δ ,Σ) is universal⇔ L(A ) = Σ∗

A accepts every finite word over Σ∗

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 5 / 31



Universality of NFA

Universality

An NFA A = (Loc, Init,Fin,δ ,Σ) is universal⇔ L(A ) = Σ∗

A accepts every finite word over Σ∗

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 5 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 6 / 31



Classical subset construction algorithm

Consider NFA A with n states.
Build corresponding DFA A ′ with 2n states.
Traverse the DFA A ′ starting in {Init}.
If a non accepting state is found, A ′ hence A is not universal.
Problem: Exponential blow-up of the set of states.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 7 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 8 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 9 / 31



cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 10 / 31



cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 10 / 31



cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 10 / 31



cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 10 / 31



cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 10 / 31



cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 10 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}

postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 11 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 12 / 31



A partial order v on Antichains

Definition
Let L denote the set of all antichains over 2Loc

∀q,q′ ∈ L : q v q′⇔∀s ∈ q∃s′ ∈ q′ : s⊆ s′

q v q′ iff every s ∈ q is subset of some s′ ∈ q′

v is a partial order (reflexive, transitiv, antisymmetric)

Example

Loc = {1,2,3,4}

{{1},{2},{3}} v {{1,2},{2,3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 13 / 31



A partial order v on Antichains

Definition
Let L denote the set of all antichains over 2Loc

∀q,q′ ∈ L : q v q′⇔∀s ∈ q∃s′ ∈ q′ : s⊆ s′

q v q′ iff every s ∈ q is subset of some s′ ∈ q′

v is a partial order (reflexive, transitiv, antisymmetric)

Example

Loc = {1,2,3,4}

{{1},{2},{3}} v {{1,2},{2,3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 13 / 31



A partial order v on Antichains

Definition
Let L denote the set of all antichains over 2Loc

∀q,q′ ∈ L : q v q′⇔∀s ∈ q∃s′ ∈ q′ : s⊆ s′

q v q′ iff every s ∈ q is subset of some s′ ∈ q′

v is a partial order (reflexive, transitiv, antisymmetric)

Example

Loc = {1,2,3,4}

{{1},{2},{3}} v {{1,2},{2,3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 13 / 31



A partial order v on Antichains

Definition
Let L denote the set of all antichains over 2Loc

∀q,q′ ∈ L : q v q′⇔∀s ∈ q∃s′ ∈ q′ : s⊆ s′

q v q′ iff every s ∈ q is subset of some s′ ∈ q′

v is a partial order (reflexive, transitiv, antisymmetric)

Example

Loc = {1,2,3,4}

{{1},{2},{3}} v {{1,2},{2,3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 13 / 31



A partial order v on Antichains

Definition
Let L denote the set of all antichains over 2Loc

∀q,q′ ∈ L : q v q′⇔∀s ∈ q∃s′ ∈ q′ : s⊆ s′

q v q′ iff every s ∈ q is subset of some s′ ∈ q′

v is a partial order (reflexive, transitiv, antisymmetric)

Example

Loc = {1,2,3,4}
{{1},{2},{3}} v {{1,2},{2,3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 13 / 31



Least upper bound t on Antichains

Definition
For two antichains q,q′ ∈ L the least upper bound (lub) is:

qtq′ = Max({s |s ∈ q∨s ∈ q′})

Thus the antichain qtq′ is the maximum (with regard to set
inclusion order) of the union of the two antichains q and q′

Example

q = {{1},{2},{3}}, q′ = {{1,2}}
qtq′ = Max({{1},{2},{3},{1,2}}) = {{1,2},{3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 14 / 31



Least upper bound t on Antichains

Definition
For two antichains q,q′ ∈ L the least upper bound (lub) is:

qtq′ = Max({s |s ∈ q∨s ∈ q′})

Thus the antichain qtq′ is the maximum (with regard to set
inclusion order) of the union of the two antichains q and q′

Example

q = {{1},{2},{3}}, q′ = {{1,2}}
qtq′ = Max({{1},{2},{3},{1,2}}) = {{1,2},{3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 14 / 31



Least upper bound t on Antichains

Definition
For two antichains q,q′ ∈ L the least upper bound (lub) is:

qtq′ = Max({s |s ∈ q∨s ∈ q′})

Thus the antichain qtq′ is the maximum (with regard to set
inclusion order) of the union of the two antichains q and q′

Example

q = {{1},{2},{3}}, q′ = {{1,2}}

qtq′ = Max({{1},{2},{3},{1,2}}) = {{1,2},{3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 14 / 31



Least upper bound t on Antichains

Definition
For two antichains q,q′ ∈ L the least upper bound (lub) is:

qtq′ = Max({s |s ∈ q∨s ∈ q′})

Thus the antichain qtq′ is the maximum (with regard to set
inclusion order) of the union of the two antichains q and q′

Example

q = {{1},{2},{3}}, q′ = {{1,2}}
qtq′ = Max({{1},{2},{3},{1,2}}) = {{1,2},{3}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 14 / 31



A Lattice on Antichains

We have a partial order (L,v) on antichains

We have a least upper bound (lub) for two antichains
A greatest lower bound (glb) can suitably be defined, such... that
we get a lattice on antichains.
A lattice is a partially ordered set, where every two elements have
a lub and a glb
Lattice property is needed later on for correctness of the algorithm

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 15 / 31



A Lattice on Antichains

We have a partial order (L,v) on antichains
We have a least upper bound (lub) for two antichains

A greatest lower bound (glb) can suitably be defined, such... that
we get a lattice on antichains.
A lattice is a partially ordered set, where every two elements have
a lub and a glb
Lattice property is needed later on for correctness of the algorithm

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 15 / 31



A Lattice on Antichains

We have a partial order (L,v) on antichains
We have a least upper bound (lub) for two antichains
A greatest lower bound (glb) can suitably be defined, such... that
we get a lattice on antichains.

A lattice is a partially ordered set, where every two elements have
a lub and a glb
Lattice property is needed later on for correctness of the algorithm

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 15 / 31



A Lattice on Antichains

We have a partial order (L,v) on antichains
We have a least upper bound (lub) for two antichains
A greatest lower bound (glb) can suitably be defined, such... that
we get a lattice on antichains.
A lattice is a partially ordered set, where every two elements have
a lub and a glb

Lattice property is needed later on for correctness of the algorithm

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 15 / 31



A Lattice on Antichains

We have a partial order (L,v) on antichains
We have a least upper bound (lub) for two antichains
A greatest lower bound (glb) can suitably be defined, such... that
we get a lattice on antichains.
A lattice is a partially ordered set, where every two elements have
a lub and a glb
Lattice property is needed later on for correctness of the algorithm

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 15 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 16 / 31



Monotone function on antichains CPreA (q)

Definition
The concept of predecessors is extended to antichains by:

CPreA : L→ L
CPreA (q) = Max({s |∃ s′ ∈ q ∃σ ∈ Σ : s = cpreA

σ (s′)})

Monotonicity: q v q′⇒ CPreA (q)v CPreA (q′)
follows from subset inclusion order and Def. of cpreA

σ (s)

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 17 / 31



Monotone function on antichains CPreA (q)

Definition
The concept of predecessors is extended to antichains by:

CPreA : L→ L
CPreA (q) = Max({s |∃ s′ ∈ q ∃σ ∈ Σ : s = cpreA

σ (s′)})

Monotonicity: q v q′⇒ CPreA (q)v CPreA (q′)

follows from subset inclusion order and Def. of cpreA
σ (s)

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 17 / 31



Monotone function on antichains CPreA (q)

Definition
The concept of predecessors is extended to antichains by:

CPreA : L→ L
CPreA (q) = Max({s |∃ s′ ∈ q ∃σ ∈ Σ : s = cpreA

σ (s′)})

Monotonicity: q v q′⇒ CPreA (q)v CPreA (q′)
follows from subset inclusion order and Def. of cpreA

σ (s)

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 17 / 31



Monotone function on antichains CPreA (q)

Example: CPreA ({{1}})

we start with the antichain {{1}}
calculate cprea({1}) = {1} and cpreb({1}) = {1,2}
CPreA ({{1}}) = Max({{1,2},{1}) = {{1,2}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 18 / 31



Monotone function on antichains CPreA (q)

Example: CPreA ({{1}})

we start with the antichain {{1}}

calculate cprea({1}) = {1} and cpreb({1}) = {1,2}
CPreA ({{1}}) = Max({{1,2},{1}) = {{1,2}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 18 / 31



Monotone function on antichains CPreA (q)

Example: CPreA ({{1}})

we start with the antichain {{1}}
calculate cprea({1}) = {1} and cpreb({1}) = {1,2}

CPreA ({{1}}) = Max({{1,2},{1}) = {{1,2}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 18 / 31



Monotone function on antichains CPreA (q)

Example: CPreA ({{1}})

we start with the antichain {{1}}
calculate cprea({1}) = {1} and cpreb({1}) = {1,2}
CPreA ({{1}}) = Max({{1,2},{1}) = {{1,2}}

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 18 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 19 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 20 / 31



The general idea

Start with antichain F = {Fin} and set Frontier = F

Repeatedly compute F = F tCPreA (Frontier) in a loop
Tarski’s Fixpoint Theorem implies that the monotone function
CPreA (q) on a complete lattice has a least fixpoint
Thus after some iteration n, F stops growing, i.e. Fn = Fn−1

Iff {Init} v F A is not universal.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 21 / 31



The general idea

Start with antichain F = {Fin} and set Frontier = F
Repeatedly compute F = F tCPreA (Frontier) in a loop

Tarski’s Fixpoint Theorem implies that the monotone function
CPreA (q) on a complete lattice has a least fixpoint
Thus after some iteration n, F stops growing, i.e. Fn = Fn−1

Iff {Init} v F A is not universal.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 21 / 31



The general idea

Start with antichain F = {Fin} and set Frontier = F
Repeatedly compute F = F tCPreA (Frontier) in a loop
Tarski’s Fixpoint Theorem implies that the monotone function
CPreA (q) on a complete lattice has a least fixpoint

Thus after some iteration n, F stops growing, i.e. Fn = Fn−1

Iff {Init} v F A is not universal.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 21 / 31



The general idea

Start with antichain F = {Fin} and set Frontier = F
Repeatedly compute F = F tCPreA (Frontier) in a loop
Tarski’s Fixpoint Theorem implies that the monotone function
CPreA (q) on a complete lattice has a least fixpoint
Thus after some iteration n, F stops growing, i.e. Fn = Fn−1

Iff {Init} v F A is not universal.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 21 / 31



The general idea

Start with antichain F = {Fin} and set Frontier = F
Repeatedly compute F = F tCPreA (Frontier) in a loop
Tarski’s Fixpoint Theorem implies that the monotone function
CPreA (q) on a complete lattice has a least fixpoint
Thus after some iteration n, F stops growing, i.e. Fn = Fn−1

Iff {Init} v F A is not universal.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 21 / 31



Algorithm 0

Initialization

We start with the antichain of the set of non accepting states

F ←{Fin}
Frontier ← F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 22 / 31



Algorithm 0

Initialization

We start with the antichain of the set of non accepting states
F ←{Fin}

Frontier ← F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 22 / 31



Algorithm 0

Initialization

We start with the antichain of the set of non accepting states
F ←{Fin}
Frontier ← F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 22 / 31



Algorithm 1

First Iteration

s1,s2,s3 are cpreσ (s) for all σ and all s ∈ Frontier

Frontier = CPreA (Frontier) = {s1,s2}
F ← F tFrontier

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 23 / 31



Algorithm 1

First Iteration

s1,s2,s3 are cpreσ (s) for all σ and all s ∈ Frontier
Frontier = CPreA (Frontier) = {s1,s2}

F ← F tFrontier

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 23 / 31



Algorithm 1

First Iteration

s1,s2,s3 are cpreσ (s) for all σ and all s ∈ Frontier
Frontier = CPreA (Frontier) = {s1,s2}
F ← F tFrontier

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 23 / 31



Algorithm 2

Second Iteration

s4,s5,s6 are cpre(s) for all σ and all s ∈ Frontier

Frontier = CPreA (Frontier) = {s4,s6}
F ← F tFrontier

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 24 / 31



Algorithm 2

Second Iteration

s4,s5,s6 are cpre(s) for all σ and all s ∈ Frontier
Frontier = CPreA (Frontier) = {s4,s6}

F ← F tFrontier

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 24 / 31



Algorithm 2

Second Iteration

s4,s5,s6 are cpre(s) for all σ and all s ∈ Frontier
Frontier = CPreA (Frontier) = {s4,s6}
F ← F tFrontier

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 24 / 31



Algorithm Termination

Termination

The Algorithm computes a series of antichains
q0 v q1 v ·· · v qn = F where qi = CPreA (qi−1)t{Fin}

Tarski’s Fixpoint Theorem implies that every monotone function
on a complete lattice has a least fixpoint F .
Lang(A ) 6= Σ∗⇔{Init} v F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 25 / 31



Algorithm Termination

Termination

The Algorithm computes a series of antichains
q0 v q1 v ·· · v qn = F where qi = CPreA (qi−1)t{Fin}
Tarski’s Fixpoint Theorem implies that every monotone function
on a complete lattice has a least fixpoint F .

Lang(A ) 6= Σ∗⇔{Init} v F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 25 / 31



Algorithm Termination

Termination

The Algorithm computes a series of antichains
q0 v q1 v ·· · v qn = F where qi = CPreA (qi−1)t{Fin}
Tarski’s Fixpoint Theorem implies that every monotone function
on a complete lattice has a least fixpoint F .
Lang(A ) 6= Σ∗⇔{Init} v F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 25 / 31



Algorithm Termination

Termination

The Algorithm computes a series of antichains
q0 v q1 v ·· · v qn = F where qi = CPreA (qi−1)t{Fin}
Tarski’s Fixpoint Theorem implies that every monotone function
on a complete lattice has a least fixpoint F .
Lang(A ) 6= Σ∗⇔{Init} v F

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 25 / 31



Content

Basic Problem
Universality of NFA
Classical subset construction

Preliminaries
Predecessors on state sets
Lattice of Antichains
A monotone predecessor function on Antichains

Antichain Algorithm to check universality
The Algorithm at work
Antichain Algorithm vs. Classical

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 26 / 31



Comparison of Classical and Antichain Algorithm

Theorem
For the familiy of Ak , k ≥ 2 with k +1 states, the Backward
Antichain Algorithm is polynomial in k, whereas the classical subset
construction algorithm is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 27 / 31



Comparison of Classical and Antichain Algorithm

Theorem
For the familiy of Ak , k ≥ 2 with k +1 states, the Backward
Antichain Algorithm is polynomial in k, whereas the classical subset
construction algorithm is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 27 / 31



Classical

Classical

DFA of 2k+1 states
2k reachable states, which are all accepting.
Algorithm traverses the tree of 2k accepting states
runtime is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 28 / 31



Classical

Classical

DFA of 2k+1 states

2k reachable states, which are all accepting.
Algorithm traverses the tree of 2k accepting states
runtime is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 28 / 31



Classical

Classical

DFA of 2k+1 states
2k reachable states, which are all accepting.

Algorithm traverses the tree of 2k accepting states
runtime is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 28 / 31



Classical

Classical

DFA of 2k+1 states
2k reachable states, which are all accepting.
Algorithm traverses the tree of 2k accepting states

runtime is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 28 / 31



Classical

Classical

DFA of 2k+1 states
2k reachable states, which are all accepting.
Algorithm traverses the tree of 2k accepting states
runtime is exponential in k

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 28 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}

In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}

In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k

Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k

Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}

Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time

The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 29 / 31



Conclusion

The Backward antichain fixpoint algorithm is considerably faster
for a certain family of NFA

Empirical comparisons of antichain and classical algorithm on
randomly generated NFA show, that antichain is up to 200 times
faster.
The higher the density of accepting states the more
advantageous is the antichain approach.
Antichain algorithms are also applied to other problems like
language inclusion

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 30 / 31



Conclusion

The Backward antichain fixpoint algorithm is considerably faster
for a certain family of NFA
Empirical comparisons of antichain and classical algorithm on
randomly generated NFA show, that antichain is up to 200 times
faster.

The higher the density of accepting states the more
advantageous is the antichain approach.
Antichain algorithms are also applied to other problems like
language inclusion

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 30 / 31



Conclusion

The Backward antichain fixpoint algorithm is considerably faster
for a certain family of NFA
Empirical comparisons of antichain and classical algorithm on
randomly generated NFA show, that antichain is up to 200 times
faster.
The higher the density of accepting states the more
advantageous is the antichain approach.

Antichain algorithms are also applied to other problems like
language inclusion

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 30 / 31



Conclusion

The Backward antichain fixpoint algorithm is considerably faster
for a certain family of NFA
Empirical comparisons of antichain and classical algorithm on
randomly generated NFA show, that antichain is up to 200 times
faster.
The higher the density of accepting states the more
advantageous is the antichain approach.
Antichain algorithms are also applied to other problems like
language inclusion

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 30 / 31



References

M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. (2006).
Antichains: A new algorithm for checking universality of finite
automata. In Proc. of CAV: Computer Aided Verification, LNCS
4144, pages 17-30. Springer, 2006.
L. Doyen and J.-F. Raskin. (2010). Antichain Algorithms for Finite
Automata. In Proc. of TACAS: Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 6015, pages 2-22.
Springer, 2010.

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 31 / 31


	Basic Problem
	Universality of NFA
	Classical subset construction

	Preliminaries
	Predecessors on state sets
	Lattice of Antichains
	A monotone predecessor function on Antichains

	Antichain Algorithm to check universality
	The Algorithm at work
	Antichain Algorithm vs. Classical


