Antichain algorithms.

Using Antichains to solve reachabillity problems on non-deterministic finite automata.

Albert-Ludwigs-Universität Freiburg

Samuel Roth

Proseminar on Automata Theory at the chair of Software Engineering. Supervised by Alexander Nutz.

Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

Content

Preliminaries Partial orders

Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

Partial orders

- V be a finite set
- $\blacksquare \ \preceq a \text{ binary relation} \ \preceq \subseteq V \times V$
- ∠ reflexive, transitive and anti-symmetric then it is called a partial order
- \blacksquare (\preceq , *V*) is called a partially ordered set.

-

Partial orders

- V be a finite set
- $\blacksquare \ \preceq a \text{ binary relation} \ \preceq \subseteq V \times V$
- reflexive, transitive and anti-symmetric then it is called a partial order
- \blacksquare (\preceq , *V*) is called a partially ordered set.

Example

• (\leq , {1,2,3,42}), the \leq order of the natural numbers.

Partial orders

- V be a finite set
- $\blacksquare \ \preceq a \text{ binary relation} \ \preceq \subseteq V \times V$
- reflexive, transitive and anti-symmetric then it is called a partial order
- \blacksquare (\preceq , *V*) is called a partially ordered set.

Example

(≤, {1,2,3,42}), the ≤ order of the natural numbers.
 (⊆,2^V)), subset-inclusion in a powerset.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

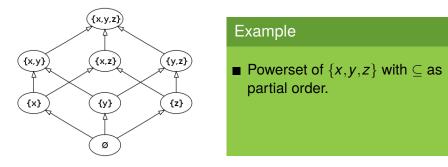
Conclusion

Antichain

■ subsets of V pairwise *incompatible* with regard to \leq .

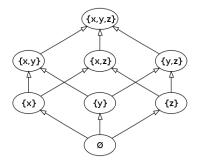
<ロ> <同> <同> < 同> < 同> < 同> < 同> <

■ subsets of V pairwise *incompatible* with regard to \leq .



イロン イロン イヨン イヨン

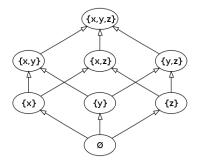
■ subsets of V pairwise *incompatible* with regard to \leq .



Example Powerset of {x,y,z} with ⊆ as partial order. {{x,y}, {x,z}} is a antichain.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• subsets of V pairwise *incompatible* with regard to \leq .



Example

- Powerset of $\{x, y, z\}$ with \subseteq as partial order.
- $\{\{x,y\},\{x,z\}\}$ is a antichain.
- $\{\{x\}, \{x, z\}\}$ is not a antichain.

< 四 > < 回 > < 回 > < 回 > <

Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

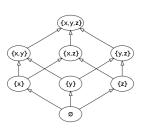
Conclusion

Downward closure

$$Down(\preceq, S) := \{ v' \in V \mid \exists v \in Sv' \preceq v \}$$

Downward closure

$$Down(\preceq, S) := \{ v' \in V \mid \exists v \in Sv' \preceq v \}$$



Examples

■
$$Down(\subseteq, \{x, y\}) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}$$

Samuel Roth - Antichain algorithms.

February 2017

Downward closure

$$Down(\preceq, S) := \{ v' \in V \mid \exists v \in Sv' \preceq v \}$$

Maximum

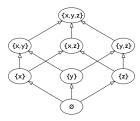
$$Max(\preceq, S) := \{ v \in S \mid \forall v' \in S : v \preceq v' \Rightarrow v' \preceq v \}$$

Downward closure

$$Down(\preceq, S) := \{ v' \in V \mid \exists v \in Sv' \preceq v \}$$

Maximum

$$Max(\preceq, S) := \{ v \in S \mid \forall v' \in S : v \preceq v' \Rightarrow v' \preceq v \}$$



Examples

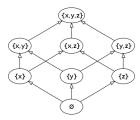
■
$$Max(\subseteq, \{\{x\}, \{x,y\}, \{x,z\}\}) = \{\{x,y\}, \{x,z\}\}$$

Downward closure

$$Down(\preceq, S) := \{ v' \in V \mid \exists v \in Sv' \preceq v \}$$

Maximum

$$Max(\preceq, S) := \{ v \in S \mid \forall v' \in S : v \preceq v' \Rightarrow v' \preceq v \}$$



Examples

$$Max(\subseteq, \{\{x\}, \{x,y\}, \{x,z\}\}) = \{\{x,y\}, \{x,z\}\}$$
$$Max(\subseteq, \{\{x\}, \{x,y\}, \{x,z\}, \{x,y,z\}\}) = \{\{x,y,z\}\}$$

Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

Antichain as a representation for a downward closed set $S \subseteq V$.

■ Use $S' := Max(\preceq, S)$ to represent S.

Antichain as a representation for a downward closed set $S \subseteq V$.

- Use $S' := Max(\preceq, S)$ to represent S.
- The question $v \in S$ becomes $\exists v' \in S' : v \preceq v'$

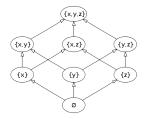
< 日 > < 同 > < 回 > < 回 > < 回 > <

Antichain as a representation for a downward closed set $S \subseteq V$.

- Use $S' := Max(\preceq, S)$ to represent S.
- The question $v \in S$ becomes $\exists v' \in S' : v \preceq v'$

Example

$$S_1 := \{\emptyset, \{x\}, \{y\}\} \text{ so } S'_1 = \{\{x\}, \{y\}\} \\ S_2 := \{\emptyset, \{x\}, \{y\}, \{x, y\}\} \text{ so } S'_2 = \{\{x, y\}\}$$



< 日 > < 同 > < 回 > < 回 > < 回 > <

Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- $G(A) := (V, E, In, \overline{Fin})$ is the corresponding powerset automaton.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- G(A) := (V, E, In, Fin) is the corresponding powerset automaton.
 V := 2^{Loc}

- コン - (同) - (回) - (回) - (

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- G(A) := (V, E, In, Fin) is the corresponding powerset automaton.
 V := 2^{Loc}
- $In := \{v \in 2^{Loc} | Init \in v\}$

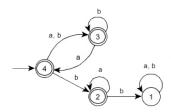
- コン - (同) - (回) - (回) - (

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- G(A) := (V, E, In, Fin) is the corresponding powerset automaton.
 V := 2^{Loc}
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$

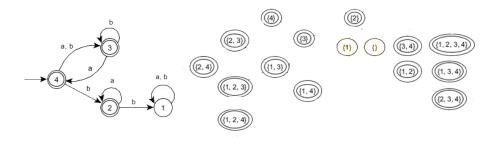
< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let $A := (Loc, Init, Fin, \delta, \Sigma)$ be a finite automaton.
- G(A) := (V, E, In, Fin) is the corresponding powerset automaton.
 V := 2^{Loc}
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.

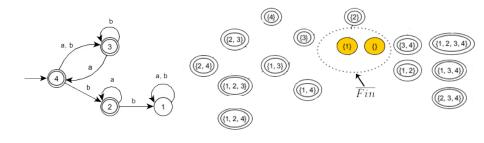
- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



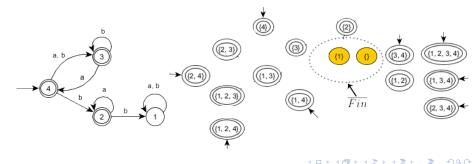
- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



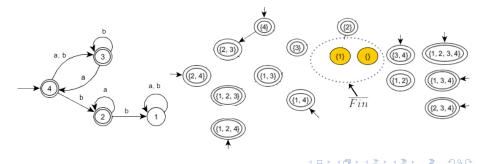
- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



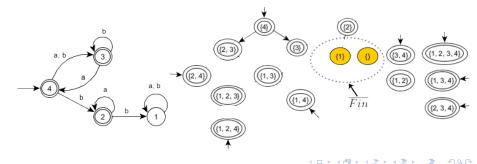
- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



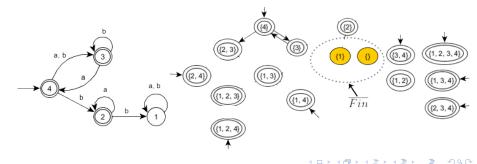
- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



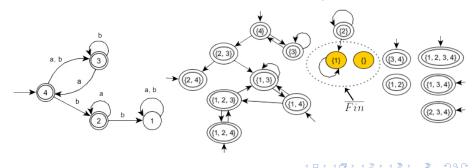
- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



- $V := 2^{Loc}$
- $\blacksquare \ \overline{Fin} := \{ v \in 2^{Loc} | v \subseteq Loc \setminus Fin \}$
- $In := \{v \in 2^{Loc} | Init \in v\}$
- $(v_1, v_2) \in E$ iff there exists a $\sigma \in \Sigma$ such that $\bigcup_{q \in v_1} \delta(q, \sigma) = v_2$.



Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

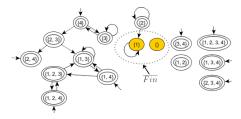
February 2017

Reachability problem in $G(A) = (V, E; In, \overline{Fin})$

- Asks if a subset $S \subseteq V$ is reachable from *In*.
- Where *Reachable* here means there is a *path* from *In* to *S*. This is $v_1, \dots v_n$ such that $(v_i, v_{i+1}) \in E$ for all 0 < i < n and $v_1 \in In$ and $v_n \in S$.

Reachability problem in $G(A) = (V, E; In, \overline{Fin})$

- Asks if a subset $S \subseteq V$ is reachable from *In*.
- Where *Reachable* here means there is a *path* from *In* to *S*. This is $v_1, \dots v_n$ such that $(v_i, v_{i+1}) \in E$ for all 0 < i < n and $v_1 \in In$ and $v_n \in S$.



Example

$S := \{\{1\}, \{1, 2, 3\}\}$ is reachable from *In*.

February 2017

The predecessors of $S \subseteq V$ in G(A) = (V, E; In, Fin)

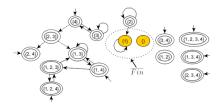
• The predecessors of $S \subseteq V$ are

$$pre(S) := \{v_1 \in V \mid \exists v_2 \in S : (v_1, v_2) \in E\}$$

The predecessors of $S \subseteq V$ in G(A) = (V, E; In, Fin)

• The predecessors of $S \subseteq V$ are

 $pre(S) := \{v_1 \in V \mid \exists v_2 \in S : (v_1, v_2) \in E\}$



Example

 $S := \{\{1\}, \{1,2,3\}\} \text{ then } pre(S) = \{\{1\}, \{2\}, \{1,2,4\}, \{1,4\}\}.$

= nar

Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm

Antichain Backward reachability algorithm

Conclusion

February 2017

17 / 28

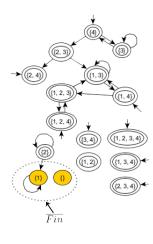
A (B) > A (B) > A (B) >

■ Solves the reachability problem for *S* ⊆ *V* by computing the monotone growing sequence of sets

$$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$$

Example starting with Fin

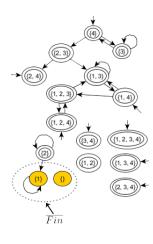
 $B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$



Example starting with *Fin*

 $B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$

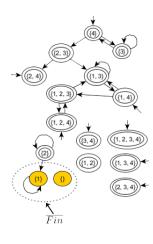
 $B_0 = \{\{\}, \{1\}\}$



Example starting with Fin

$$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$$

 $B_0 = \{\{\}, \{1\}\}$ $B_1 = B_0 \cup pre(B_0)$

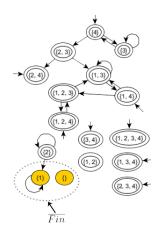


・ロト ・回ト ・ヨト ・ヨト

Example starting with *Fin*

$$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$$

 $B_0 = \{\{\}, \{1\}\}$ $B_1 = B_0 \cup pre(B_0)$ $= \{\{\}, \{1\}\} \cup pre(\{\{\}, \{1\}\})$



Example starting with *Fin*

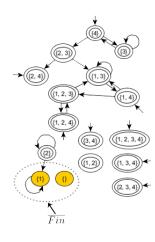
$$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$$

 $B_0 = \{\{\}, \{1\}\}$

 $B_1 = B_0 \cup pre(B_0)$

 $= \{\{\}, \{1\}\} \cup pre(\{\{\}, \{1\}\})$

 $= \{\{\}, \{1\}\} \cup \{\{1\}, \{2\}\} = \{\{\}, \{1\}, \{2\}\}$



Example starting with *Fin*

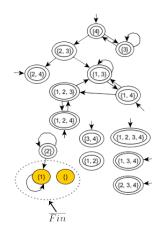
$$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$$

 $B_0 = \{\{\}, \{1\}\}$

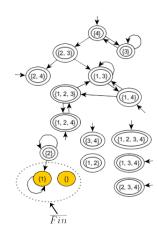
 $B_1 = B_0 \cup pre(B_0)$

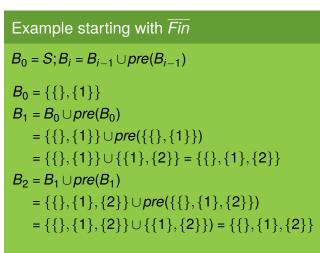
 $= \{\{\}, \{1\}\} \cup pre(\{\{\}, \{1\}\}) \\ = \{\{\}, \{1\}\} \cup \{\{1\}, \{2\}\} = \{\{\}, \{1\}, \{2\}\}\}$

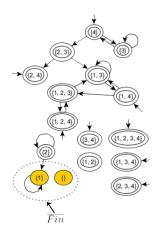
 $= \{\{\}, \{1\}\} \cup \{\{1\}, \{2\}\} = \{\{\}, \{1\}, \{2\}\}$ $B_2 = B_1 \cup pre(B_1)$



Example starting with Fin $B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$ $B_0 = \{\{\}, \{1\}\}$ $B_1 = B_0 \cup pre(B_0)$ $= \{\{\}, \{1\}\} \cup pre(\{\{\}, \{1\}\})$ $= \{\{\}, \{1\}\} \cup \{\{1\}, \{2\}\} = \{\{\}, \{1\}, \{2\}\}$ $B_2 = B_1 \cup pre(B_1)$ $= \{\{\}, \{1\}, \{2\}\} \cup pre(\{\{\}, \{1\}, \{2\}\})$







Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

Antichain Backward reachability algorithm

- Antichains can be used as representations for closed sets.
- Where can we introduce antichains in our algorithm?

-

< 日 > < 同 > < 回 > < 回 > < 回 > <

Antichain Backward reachability algorithm

- Antichains can be used as representations for closed sets.
- Where can we introduce antichains in our algorithm?

Lemma 1

Given $G = (V, E; In, \overline{Fin})$ then pre(S) is downward closed for all downward closed sets $S \subseteq V$

Antichain Backward reachability algorithm

- Antichains can be used as representations for closed sets.
- Where can we introduce antichains in our algorithm?

Lemma 1

Given $G = (V, E; In, \overline{Fin})$ then pre(S) is downward closed for all downward closed sets $S \subseteq V$

Lemma 2

Fin is downward closed.

Proof "pre(S) is downward closed for all downward closed *S*."

Proof "pre(S) is downward closed for all downward closed *S*."

Let $S \subseteq V$ be downward closed. We need to show that

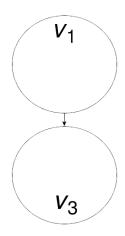
 $v_1 \in pre(S)$ and $v_2 \subseteq v_1 \Rightarrow v_2 \in pre(S)$

Proof "pre(S) is downward closed for all downward closed *S*."

Let $S \subseteq V$ be downward closed. We need to show that

$$v_1 \in pre(S)$$
 and $v_2 \subseteq v_1 \Rightarrow v_2 \in pre(S)$

Let $v_1 \in pre(S)$ this means there exists $v_3 \in S$ where $(v_1, v_3) \in E$ and a $\sigma \in \Sigma$ s.t. $\bigcup_{q \in v_1} \delta(q, \sigma) = v_3$



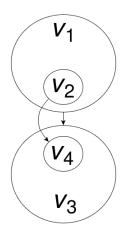
22 / 28

Proof "pre(S) is downward closed for all downward closed *S*."

Let $S \subseteq V$ be downward closed. We need to show that

$$v_1 \in pre(S)$$
 and $v_2 \subseteq v_1 \Rightarrow v_2 \in pre(S)$

Let $v_1 \in pre(S)$ this means there exists $v_3 \in S$ where $(v_1, v_3) \in E$ and a $\sigma \in \Sigma$ s.t. $\bigcup_{q \in v_1} \delta(q, \sigma) = v_3$ Looking at $v_2 \subseteq v_1$ we get $\bigcup_{q \in v_2} \delta(q, \sigma) = v_4 \subseteq v_3$

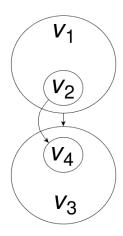


Proof "pre(S) is downward closed for all downward closed *S*."

Let $S \subseteq V$ be downward closed. We need to show that

$$v_1 \in pre(S)$$
 and $v_2 \subseteq v_1 \Rightarrow v_2 \in pre(S)$

Let $v_1 \in pre(S)$ this means there exists $v_3 \in S$ where $(v_1, v_3) \in E$ and a $\sigma \in \Sigma$ s.t. $\bigcup_{q \in v_1} \delta(q, \sigma) = v_3$ Looking at $v_2 \subseteq v_1$ we get $\bigcup_{q \in v_2} \delta(q, \sigma) = v_4 \subseteq v_3$ Hence $v_2 \in pre(S)$



 $\overline{\textit{Fin}} := \{ v \in 2^{\textit{Loc}} | v \subseteq \textit{Loc} \setminus \textit{Fin} \}$

Proof "Fin is downward closed."

If $v_1 \in \overline{Fin}$ and $v_2 \subseteq v_1$ then $v_2 \subseteq v_1 \subseteq Loc \setminus Fin$ hence $v_2 \in \overline{Fin}$

We extend the fixpoint algorithm

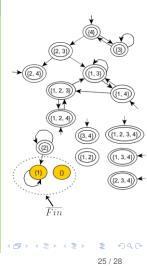
$$B_0 = S; B_i = B_{i-1} \cup pre(B_{i-1})$$

to the antichain fixpoint algorithm

$$\widetilde{B}_0 = Max(\subseteq, S); \widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1})))$$

Example starting with Fin

 $\widetilde{B}_0 = Max(\subseteq, S);$ $\widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1})))$

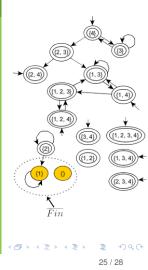


February 2017

Example starting with Fin

 $\begin{array}{l} \widetilde{B}_0 = Max(\subseteq, S);\\ \widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1}))) \end{array} \end{array}$

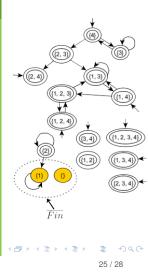
 $\widetilde{B}_0 = Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$



Example starting with \overline{Fin}

$$\begin{split} &\widetilde{B}_0 = Max(\subseteq, S); \\ &\widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup \textit{pre}(\textit{Down}(\subseteq, \widetilde{B}_{i-1}))) \end{split}$$

$$\widetilde{B}_0 = Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$$
$$\widetilde{B}_1 = Max(\subseteq, \{1\} \cup pre(Down(\subseteq, \{1\})))$$



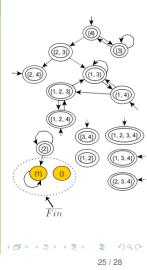
Example starting with *Fin*

$$\begin{split} &\widetilde{B}_0 = Max(\subseteq, S); \\ &\widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1}))) \end{split}$$

 $\widetilde{B}_0 = Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$

$$B_1 = Max(\subseteq, \{1\} \cup pre(Down(\subseteq, \{1\})))$$

= $Max(\subseteq, \{1\} \cup pre(\{\{\}, \{1\}\}))$

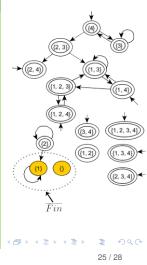


Example starting with *Fin*

$$\begin{split} &\widetilde{B}_0 = Max(\subseteq, S); \\ &\widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1}))) \end{split}$$

 $\widetilde{B}_0 = Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$

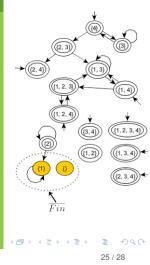
$$\begin{split} \widetilde{B}_1 &= Max(\subseteq, \{1\} \cup pre(Down(\subseteq, \{1\}))) \\ &= Max(\subseteq, \{1\} \cup pre(\{\{\}, \{1\}\})) \\ &= Max(\subseteq, \{1\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\}) \end{split}$$



Example starting with *Fin*

 $\widetilde{B}_0 = Max(\subseteq, S); \\ \widetilde{B}_i = Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1})))$

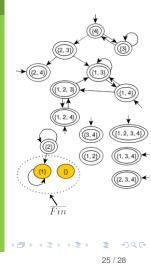
$$\begin{split} \widetilde{B}_0 &= Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\} \\ \widetilde{B}_1 &= Max(\subseteq, \{1\} \cup pre(Down(\subseteq, \{1\}))) \\ &= Max(\subseteq, \{1\} \cup pre(\{\{\}, \{1\}\})) \\ &= Max(\subseteq, \{1\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\} \\ \widetilde{B}_2 &= Max(\subseteq, \{\{1\}, \{2\}\} \cup pre(Down(\subseteq, \{\{1\}, \{2\}\}))) \end{split}$$



Example starting with *Fin*

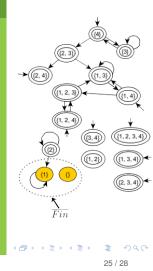
$$\begin{split} \widetilde{B}_{0} &= Max(\subseteq, S); \\ \widetilde{B}_{i} &= Max(\subseteq, \widetilde{B}_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1}))) \\ \widetilde{B}_{0} &= Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\} \\ \widetilde{B}_{1} &= Max(\subseteq, \{1\} \cup pre(Down(\subseteq, \{1\}))) \\ &= Max(\subseteq, \{1\} \cup pre(\{\{\}, \{1\}\})) \\ &= Max(\subseteq, \{1\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\}) \\ \widetilde{B}_{2} &= Max(\subseteq, \{\{1\}, \{2\}\} \cup pre(Down(\subseteq, \{\{1\}, \{2\}\}))) \end{split}$$

 $= Max(\subseteq, \{\{1\}, \{2\}\} \cup pre(\{\{\}, \{1\}, \{2\}\}))$



Example starting with *Fin*

 $B_0 = Max(\subseteq, S);$ $B_i = Max(\subseteq, B_{i-1} \cup pre(Down(\subseteq, \widetilde{B}_{i-1})))$ $B_0 = Max(\subseteq, \{\{\}, \{1\}\}) = \{\{1\}\}$ $B_1 = Max(\subseteq, \{1\} \cup pre(Down(\subseteq, \{1\})))$ $= Max(\subseteq, \{1\} \cup pre(\{\{\}, \{1\}\}))$ $= Max(\subseteq, \{1\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\}$ $B_2 = Max(\subseteq, \{\{1\}, \{2\}\} \cup pre(Down(\subseteq, \{\{1\}, \{2\}\})))$ $= Max(\subseteq, \{\{1\}, \{2\}\} \cup pre(\{\{\}, \{1\}, \{2\}\}))$ $= Max(\subseteq, \{\{1\}, \{2\}\} \cup \{\{1\}, \{2\}\}) = \{\{1\}, \{2\}\}$



Content

Preliminaries

Partial orders Antichains Downward closure, Maximum

Antichains as representations of closed sets

Powerset determinization of Non-deterministic finite automata

Reachability problem

Backward reachability fixpoint algorithm Antichain Backward reachability algorithm

Conclusion

■ Antichains can be used as representations of closed sets.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Conclusion

- Antichains can be used as representations of closed sets.
- In the powerset construction \overline{Fin} is a downward closed set.

Conclusion

- Antichains can be used as representations of closed sets.
- In the powerset construction \overline{Fin} is a downward closed set.
- On the powerset automaton pre(S) for closed S is downward closed. Thus we can use antichains in the classic backward reachability algorithm.

Conclusion

- Antichains can be used as representations of closed sets.
- In the powerset construction \overline{Fin} is a downward closed set.
- On the powerset automaton pre(S) for closed S is downward closed. Thus we can use antichains in the classic backward reachability algorithm.
- To be efficient, further improvements are possible and will be shown in antichain talk II.

Doyen, Laurent and Raskin, Jean-François Antichain algorithms for finite automata International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2–22, 2010.

De Wulf, Martin and Doyen, Laurent and Henzinger, Thomas A and Raskin, J-F.
 Antichains: A new algorithm for checking universality of finite automata.
 International Conference on Computer Aided Verification, 17–30, 2006.