

Learning minimal separating DFA for Compositional Verification

Karsten Fix

February 23, 2017

Karsten Fix Learning minimal separating DFA for Compositional Verification

A B > A B >

Motivation

2 Definitions

- Separating DFA
- 3DFA
- Consistency
- Soundness
- Completeness
- 3 Algorithm
 - Candidate Generator
 - Completeness Checking
 - Finding minimal consistent DFA
 - Soundness Checking

References

Motivation

Compositional Verification

System

- consist of Components M_1 and M_2
- shall satisfy a Property P
- can be describe by regular Laguages $\mathcal{L}(M_1), \mathcal{L}(M_2), \mathcal{L}(P)$.

To verify this, there's an inference rule, that says:

$$\frac{\mathcal{L}(M_1) \cap \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(P) \quad \mathcal{L}(M_2) \subseteq \mathcal{L}(\mathcal{A})}{\mathcal{L}(M_1) \cap \mathcal{L}(M_2) \subseteq \mathcal{L}(P)}$$

Intuitively: We can find an Assumption \mathcal{A} for M_2 .

- 4 B b 4 B b

Motivation

Compositional Verification

This premise of the interference rule:

 $\mathcal{L}(M_1)\cap\mathcal{L}(\mathcal{A})\subseteq\mathcal{L}(P)$

can be rewritten as:

$$\mathcal{L}(\mathcal{A}) \subseteq \overline{\mathcal{L}(M_1) \cap \overline{\mathcal{L}(P)}}$$

Substitution:

$$\mathcal{L}(M_2) \subseteq \mathcal{L}(\mathcal{A}) \subseteq \overline{\mathcal{L}(M_1) \cap \overline{\mathcal{L}(P)}}$$

Then \mathcal{A} is separating DFA for $\mathcal{L}(M_2)$ and $\mathcal{L}(M_1) \cap \overline{\mathcal{L}(P)}$.

A 10

- 4 B b 4 B b

Separating DFA 3DFA Consistency Soundness Completeness

Separating DFA

Definition

Let $L_1, L_2 \subseteq \Sigma^*$ be *disjoint* regular languages. Then a DFA \mathcal{A} is called **separating** DFA for L_1 and L_2 , if it statisfies:

1
$$L_1 \subseteq \mathcal{L}(\mathcal{A})$$

2 $\mathcal{L}(\mathcal{A}) \cap L_2 =$

Or equivalently: $L_1 \subseteq \mathcal{L}(\mathcal{A}) \subseteq \overline{L_2}$

Ø

・ロト ・同ト ・ヨト ・ヨト

Separating DFA 3DFA Consistency Soundness Completeness

Separating DFA

That means: A accepts at least all words of L_1 and rejects all words of L_2 .

(日) (同) (三) (三)

Separating DFA 3DFA Consistency Soundness Completeness

3DFA

Definition

A 3DFA ${\mathcal C}$ is defined like a DFA:

$$\mathcal{C} = (Q, \Sigma, \delta, q_0, \underbrace{Acc, Rej, Dont}_Q)$$

but all states are partitioned into three sets:

- $Acc \subseteq Q$: accepting states
- $Rej \subseteq Q$: rejecting states
- $Dont \subseteq Q$: Don't care states

That means: $Acc \cap Rej \cap Dont = \emptyset$

- 4 同 6 4 日 6 4 日 6

Separating DFA 3DFA Consistency Soundness Completeness

Given a 3DFA $\mathcal C$ a string $w \in \Sigma^*$ is:

- accepted by $\mathcal C$ if $\hat \delta(q_0, w) \in Acc$
- rejected by \mathcal{C} if $\hat{\delta}(q_0, w) \in Rej$
- called **don't care** string if $\hat{\delta}(q_0, w) \in Dont$

< A >

→ □ → → □ →

Separating DFA 3DFA Consistency Soundness Completeness

3DFA - Visualisation

A 3DFA will be visualised, using squares for the don't care states. Rejecting and accepting states are visualised as circles, as usual. An Example:

ъ

Separating DFA 3DFA Consistency Soundness Completeness

$\text{3DFA} \rightarrow \text{DFA} \; \mathcal{C}^+$

Definition

We define a DFA $\mathcal{C}^+,$ where the don't care states become accepting states:

$$\mathcal{C}^+ = (\textit{Q}, \Sigma, \textit{q}_0, \delta, \textit{Acc} \cup \textit{Dont})$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

Separating DFA 3DFA Consistency Soundness Completeness

${ m 3DFA} ightarrow { m DFA} { m } {\cal C}^+$

Example 3DFA C:

DFA C^+ :

<ロ> <同> <同> < 回> < 回>

Separating DFA 3DFA Consistency Soundness Completeness

${\rm 3DFA} \to {\rm DFA} \; {\cal C}^-$

Definition

We define a DFA $\mathcal{C}^-,$ where only the accepting states are accepting:

$$\mathcal{C}^{-} = (Q, \Sigma, q_0, \delta, Acc)$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○良 ○ のへで

Separating DFA 3DFA Consistency Soundness Completeness

${ m 3DFA} ightarrow { m DFA} \ {\cal C}^-$

Example 3DFA C:

DFA C^- :

<ロ> <同> <同> < 回> < 回>

Separating DFA 3DFA Consistency Soundness Completeness

Definition

Let \mathcal{A} be a DFA, then it will be called **consistent** with a 3DFA \mathcal{C} , if both are accepting and rejecting the same words. Means:

1
$$\mathcal{L}(\mathcal{C}^{-}) \subseteq \mathcal{L}(\mathcal{A})$$

2 $\mathcal{L}(\mathcal{A}) \cap \overline{\mathcal{L}(\mathcal{C}^{+})} =$

Or equivalently: $\mathcal{L}(\mathcal{C}^-) \subseteq \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{C}^+)$

Ø

・ 同 ト ・ ヨ ト ・ ヨ ト

Separating DFA 3DFA Consistency Soundness Completeness

Consistency - Visualisation

DFA \mathcal{A} consistent with a 3DFA \mathcal{C} :

(日) (同) (三) (三)

Separating DFA 3DFA Consistency Soundness Completeness

Consistency - Visualisation

DFA \mathcal{A} inconsistent with a 3DFA \mathcal{C} :

(日) (同) (三) (三)

Separating DFA 3DFA Consistency Soundness Completeness

Definition

A 3DFA C is called **sound** with respect to L_1 and L_2 , if any with C consistent DFA A separates L_1 and L_2 .

Remember

- Consistency: $\mathcal{L}(\mathcal{C}^-) \subseteq \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{C}^+)$
- Separating: $L_1 \subseteq \mathcal{L}(\mathcal{A}) \subseteq \overline{L_2}$

- 4 同 6 4 日 6 4 日 6

Separating DFA 3DFA Consistency Soundness Completeness

Soundness - Visualisation

Any DFA \mathcal{A} consistent with 3DFA \mathcal{C} :

∃ ► < ∃ ►</p>

Separating DFA 3DFA Consistency Soundness Completeness

Soundness - Visualisation

is separating DFA for L_1 and L_2 , so $\mathcal C$ is sound:

・ 同 ト ・ ヨ ト ・ ヨ ト

Separating DFA 3DFA Consistency Soundness Completeness

Soundness - Visualisation

An unsound 3DFA \mathcal{C} :

・ロト ・回ト ・ヨト ・ヨト

Separating DFA 3DFA Consistency Soundness Completeness

Completeness

Definition

A 3DFA C is called **complete** with respect to L_1 and L_2 , if any separating DFA A for L_1 and L_2 is consistent with C.

Remember

- Separating: $L_1 \subseteq \mathcal{L}(\mathcal{A}) \subseteq \overline{L_2}$
- Consistency: $\mathcal{L}(\mathcal{C}^-) \subseteq \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{C}^+)$

イロト イポト イヨト イヨト

Separating DFA 3DFA Consistency Soundness Completeness

Completeness - Visualisation

Any DFA \mathcal{A} separating L_1 and L_2 :

< 17 ▶

- ▲ 문 ▶ - ▲ 문 ▶

Separating DFA 3DFA Consistency Soundness Completeness

Completeness - Visualisation

is consistent with 3DFA $\mathcal C,$ so it is complete:

<ロ> <同> <同> < 同> < 同> < 同> < 同> - < 同> - < 同> - < 同 > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ > - < □ >

Separating DFA 3DFA Consistency Soundness Completeness

Completeness - Visualisation

An incomplete 3DFA \mathcal{C} :

イロン イロン イヨン イヨン

Separating DFA 3DFA Consistency Soundness Completeness

- DFA \mathcal{A} is separating DFA if: $L_1 \subseteq \mathcal{L}(\mathcal{A}) \subseteq \overline{L_2}$
- 2 $\mathcal{L}(\mathcal{C}^-)$: are all words a 3DFA \mathcal{C} accepts
- **③** $\overline{\mathcal{L}(\mathcal{C}^+)}$: are all words a 3DFA \mathcal{C} rejects
- DFA \mathcal{A} is consistent with 3DFA \mathcal{C} if: $\mathcal{L}(\mathcal{C}^{-}) \subseteq \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{C}^{+})$
- **③** 3DFA is sound if $L_1 \subseteq \mathcal{L}(\mathcal{C}^-)$ and $\mathcal{L}(\mathcal{C}^+) \subseteq \overline{L_2}$
- **③** 3DFA is complete if $\mathcal{L}(\mathcal{C}^-) \subseteq L_1$ and $\overline{L_2} \subseteq \mathcal{L}(\mathcal{C}^+)$

・ロト ・同ト ・ヨト ・ヨト

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

Overview of L^{sep}

Karsten Fix Learning minimal separating DFA for Compositional Verification

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

The algorithm assumes a teacher that can answer:

- membership queries $w \stackrel{?}{\in} L_1$, $w \stackrel{?}{\in} L_2$ with:
 - + if $w \in L_1$

•
$$-$$
 if $w \in L_2$

• ? otherwise, i.e. don't care.

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

Candidate Generator

Based on the L^* -algorithm a 3DFA C_i is computed by asking **membership queries** and building an observation table with entries: +, - and ?, depending on the answers of the teacher.

< A >

< ∃ > < ∃ >

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

Teacher

The teacher also answers:

- containment queries, such as $\mathcal{L}(\mathcal{C}_i^-) \stackrel{?}{\subseteq} L_1$, $\overline{L_2} \stackrel{?}{\subseteq} \mathcal{L}(\mathcal{C}_i^+)$ with:
 - Yes, if both subset relations are true
 - No, if one relation is false. It also gives a counterexample (CE)

(日) (同) (三) (三)

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

Minimal consistent DFA

 L^{sep} translates the 3DFA C_i into a mealy automaton, which will be minimized with existing algorithms. After minimizing it, it will be translated into a consistent DFA A_i .

(日) (同) (三) (三)

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

Soundness Checking

Now the DFA A_i is minimal, complete and consistent. The last step is to check for soundness, using **containment queries**:

- $L_1 \stackrel{?}{\subseteq} \mathcal{L}(\mathcal{A})$
- $\mathcal{L}(\mathcal{A}) \stackrel{?}{\subseteq} \overline{L_2}$

In case both subset relations are true, we have the minimal separating DFA for L_1 and L_2 . Otherwise there is a CE sent to the Candidate Generator.

・ロト ・同ト ・ヨト ・ヨト

Candidate Generator Completeness Checking Finding minimal consistent DFA Soundness Checking

Runtime

Let n be the size of the minimal sound and complete 3DFA. Let m be the size of the longest CE, then

- at most n-1 incorrect 3DFAs
- $O(n^2 + n \cdot log(m))$ queries, for a complete and sound 3DFA

イロト イポト イヨト イヨト

-

This talk is mainly based on

 Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, B.-Y. Wang: Learning Minimal Separating DFA for Compositional Verification. S.Kowalewski, A. Phillippou: TACAS 2009, LNCS 5505, pp. 31-45, 2009. Springer-Verlag Berlin-Heidelberg 2009.

References

and in addtion the following has been studied:

- Gupta, A., McMillilan, K.L., Fu, Z.: Automated assumption generation for compositional verification. In: Damm, W., Hermanns, H.(eds.) CAV 2007. LNCS, vol 4590, pp. 420-432. Springer, Heidelberg (2007)
- Angluin, D: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87-106 (1987)
- Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified sequential switching functions. IRE Transitions on Electronic Computers EC-8, 356366 (1959)

イロト イポト イヨト イヨト 二日

... for Listening and Attention. Any Questions?