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Motivation

Compositional Verification

System

consist of Components M1 and M2

shall satisfy a Property P

can be describe by regular Laguages L(M1),L(M2),L(P).

To verify this, there’s an inference rule, that says:

L(M1) ∩ L(A) ⊆ L(P) L(M2) ⊆ L(A)

L(M1) ∩ L(M2) ⊆ L(P)

Intuitively: We can find an Assumption A for M2.
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Compositional Verification

This premise of the interference rule:

L(M1) ∩ L(A) ⊆ L(P)

can be rewritten as:

L(A) ⊆ L(M1) ∩ L(P)

Substitution:

L(M2) ⊆ L(A) ⊆ L(M1) ∩ L(P)

Then A is separating DFA for L(M2) and L(M1) ∩ L(P).
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Separating DFA

Definition

Let L1, L2 ⊆ Σ∗ be disjoint regular languages. Then a DFA A is
called separating DFA for L1 and L2, if it statisfies:

1 L1 ⊆ L(A)

2 L(A) ∩ L2 = ∅

Or equivalently: L1 ⊆ L(A) ⊆ L2
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Separating DFA

That means: A accepts at least all words of L1 and rejects all
words of L2.

L1 L(A) L2
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3DFA

Definition

A 3DFA C is defined like a DFA:

C = (Q,Σ, δ, q0,Acc ,Rej ,Dont︸ ︷︷ ︸
Q

)

but all states are partitioned into three sets:

Acc ⊆ Q: accepting states

Rej ⊆ Q: rejecting states

Dont ⊆ Q: Don’t care states

That means: Acc ∩ Rej ∩ Dont = ∅
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3DFA

Given a 3DFA C a string w ∈ Σ∗ is:

accepted by C if δ̂(q0,w) ∈ Acc

rejected by C if δ̂(q0,w) ∈ Rej

called don’t care string if δ̂(q0,w) ∈ Dont
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3DFA - Visualisation

A 3DFA will be visualised, using squares for the don’t care states.
Rejecting and accepting states are visualised as circles, as usual.
An Example:

q0start q1

q2 q4

q3
a

b

b

a

a

b

a

b

a

b
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3DFA → DFA C+

Definition

We define a DFA C+, where the don’t care states become
accepting states:

C+ = (Q,Σ, q0, δ,Acc ∪ Dont)
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3DFA → DFA C+

Example 3DFA C:

q0start q1

q2 q4

q3
a

b

b

a

a

b

a

b

a

b

DFA C+:

q0start q1

q2 q4

q3
a

b

b

a

a

b

a

b

a

b
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3DFA → DFA C−

Definition

We define a DFA C−, where only the accepting states are
accepting:

C− = (Q,Σ, q0, δ,Acc)
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3DFA → DFA C−

Example 3DFA C:

q0start q1

q2 q4

q3
a

b

b

a

a

b

a

b

a

b

DFA C−:

q0start q1

q2 q4

q3
a

b

b

a

a

b

a

b

a

b
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Consistency

Definition

Let A be a DFA, then it will be called consistent with a 3DFA C,
if both are accepting and rejecting the same words. Means:

1 L(C−) ⊆ L(A)

2 L(A) ∩ L(C+) = ∅

Or equivalently: L(C−) ⊆ L(A) ⊆ L(C+)
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Consistency - Visualisation

DFA A consistent with a 3DFA C:

L(C+)L(A)L(C−)
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Consistency - Visualisation

DFA A inconsistent with a 3DFA C:

L(C+)

L(A)
L(C−)
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Soundness

Definition

A 3DFA C is called sound with respect to L1 and L2, if any with C
consistent DFA A separates L1 and L2.

Remember

Consistency: L(C−) ⊆ L(A) ⊆ L(C+)

Separating: L1 ⊆ L(A) ⊆ L2
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Soundness - Visualisation

Any DFA A consistent with 3DFA C:

L(C−)

L(C+)
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Soundness - Visualisation

is separating DFA for L1 and L2, so C is sound:

L1 L2

L(C−)

L(C+)
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Soundness - Visualisation

An unsound 3DFA C:

L1 L2
u v

L(C−)

L(C+)
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Completeness

Definition

A 3DFA C is called complete with respect to L1 and L2, if any
separating DFA A for L1 and L2 is consistent with C.

Remember

Separating: L1 ⊆ L(A) ⊆ L2

Consistency: L(C−) ⊆ L(A) ⊆ L(C+)
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Completeness - Visualisation

Any DFA A separating L1 and L2:

L2L(A)

L1
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Completeness - Visualisation

is consistent with 3DFA C, so it is complete:

L(C+)

L2

L1

L(C−)
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Completeness - Visualisation

An incomplete 3DFA C:

L(C+)

L2

L1

L(C−)
uv
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Summary

1 DFA A is separating DFA if: L1 ⊆ L(A) ⊆ L2

2 L(C−) : are all words a 3DFA C accepts

3 L(C+) : are all words a 3DFA C rejects

4 DFA A is consistent with 3DFA C if: L(C−) ⊆ L(A) ⊆ L(C+)

5 3DFA is sound if L1 ⊆ L(C−) and L(C+) ⊆ L2

6 3DFA is complete if L(C−) ⊆ L1 and L2 ⊆ L(C+)
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Overview of Lsep

Candidate
Generator

Completeness
Checking

L(C−i ) ⊆ L1

L2 ⊆ L(C+
i )

Ci

No

CE

Finding a
minimal

consistent DFA

YesCi

Soundness
Checking

L1 ⊆ L(Ai )

L(Ai ) ⊆ L2

Ai

Yes

No

CE
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Teacher

Candidate
Generator

Completeness
Checking

L(C−i ) ⊆ L1

L2 ⊆ L(C+
i )

Ci

No

CE

Finding a
minimal

consistent DFA

Yes

Ci

Soundness
Checking

L1 ⊆ L(Ai )

L(Ai ) ⊆ L2

Ai

Yes
NoCE

The algorithm assumes a teacher that can answer:

membership queries w
?
∈ L1, w

?
∈ L2 with:

+ if w ∈ L1

− if w ∈ L2

? otherwise, i.e. don’t care.
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Candidate Generator

Based on the L∗-algorithm a 3DFA Ci is computed by asking
membership queries and building an observation table with
entries: +, − and ?, depending on the answers of the teacher.

λ b

λ − ?
b ? ?

ba − +
bab + +

a − ?
...

...
...

λstart b

bab ba

Ci

a

b

b

a

a

b

b

a
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Teacher

Candidate
Generator

Completeness
Checking

L(C−i ) ⊆ L1

L2 ⊆ L(C+
i )

Ci

No

CE

Finding a
minimal

consistent DFA

Yes

Ci

Soundness
Checking

L1 ⊆ L(Ai )

L(Ai ) ⊆ L2

Ai

Yes
NoCE

The teacher also answers:

containment queries, such as L(C−i )
?
⊆ L1, L2

?
⊆ L(C+

i )
with:

Yes, if both subset relations are true
No, if one relation is false. It also gives a counterexample (CE )
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Minimal consistent DFA

Candidate
Generator

Completeness
Checking

L(C−i ) ⊆ L1

L2 ⊆ L(C+
i )

Ci

No

CE

Finding a
minimal

consistent DFA

Yes

Ci

Soundness
Checking

L1 ⊆ L(Ai )

L(Ai ) ⊆ L2

Ai

Yes
NoCE

Lsep translates the 3DFA Ci into a mealy automaton, which will be
minimized with existing algorithms. After minimizing it, it will be
translated into a consistent DFA Ai .
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Soundness Checking

Candidate
Generator

Completeness
Checking

L(C−i ) ⊆ L1

L2 ⊆ L(C+
i )

Ci

No

CE

Finding a
minimal

consistent DFA

Yes

Ci

Soundness
Checking

L1 ⊆ L(Ai )

L(Ai ) ⊆ L2

Ai

Yes
NoCE

Now the DFA Ai is minimal, complete and consistent. The last
step is to check for soundness, using containment queries:

L1

?
⊆ L(A)

L(A)
?
⊆ L2

In case both subset relations are true, we have the minimal
separating DFA for L1 and L2. Otherwise there is a CE sent to the
Candidate Generator.
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Runtime

Candidate
Generator

Completeness
Checking

L(C−i ) ⊆ L1

L2 ⊆ L(C+
i )

Ci

No

CE

Finding a
minimal

consistent DFA

Yes

Ci

Soundness
Checking

L1 ⊆ L(Ai )

L(Ai ) ⊆ L2

Ai

Yes
NoCE

Let n be the size of the minimal sound and complete 3DFA.
Let m be the size of the longest CE, then

at most n − 1 incorrect 3DFAs

O(n2 + n · log(m)) queries, for a complete and sound 3DFA
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Thanks...

... for Listening and Attention.
Any Questions?
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