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Universality of NFA

Universality

An NFA A = (Loc, Init,Fin,δ ,Σ) is universal⇔ L(A ) = Σ∗

A accepts every finite word over Σ∗
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Classical subset construction algorithm

Consider NFA A with n states.
Build corresponding DFA A ′ with 2n states.
Traverse the DFA A ′ starting in {Init}.
If a non accepting state is found, A ′ hence A is not universal.
Problem: Exponential blow-up of the set of states.
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cpreA
σ (s) exclusive predecessors of a state set

Definition
Consider NFA A = (Loc, Init,Fin,δ ,Σ)
For s⊆ Loc we define:

cpreA
σ (s) = {l ∈ Loc |∀l ′ ∈ Loc : δ (l,σ , l ′)⇒ l ′ ∈ s}

Thus cpreA
a (s) contains all states

that with letter a have a transition
to some state in s and nowhere
else.
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cpreA
σ (s) and postAσ (s)

Example cpreA
σ (s):

cpreA
a ({1}) = {1}

cpreA
b ({1}) = {1,2}

cpreA
a ({1,2}) = {1,2}

cpreA
b ({1,2}) = {1,2}

Example postAσ (s):

postAa ({1,2}) = {1,2}
postAb ({1,2}) = {1}
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A partial order v on Antichains

Definition
Let L denote the set of all antichains over 2Loc

∀q,q′ ∈ L : q v q′⇔∀s ∈ q∃s′ ∈ q′ : s⊆ s′

q v q′ iff every s ∈ q is subset of some s′ ∈ q′

v is a partial order (reflexive, transitiv, antisymmetric)

Example

Loc = {1,2,3,4}

{{1},{2},{3}} v {{1,2},{2,3}}
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Least upper bound t on Antichains

Definition
For two antichains q,q′ ∈ L the least upper bound (lub) is:

qtq′ = Max({s |s ∈ q∨s ∈ q′})

Thus the antichain qtq′ is the maximum (with regard to set
inclusion order) of the union of the two antichains q and q′

Example

q = {{1},{2},{3}}, q′ = {{1,2}}
qtq′ = Max({{1},{2},{3},{1,2}}) = {{1,2},{3}}
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A Lattice on Antichains

We have a partial order (L,v) on antichains

We have a least upper bound (lub) for two antichains
A greatest lower bound (glb) can suitably be defined, such... that
we get a lattice on antichains.
A lattice is a partially ordered set, where every two elements have
a lub and a glb
Lattice property is needed later on for correctness of the algorithm
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Monotone function on antichains CPreA (q)

Definition
The concept of predecessors is extended to antichains by:

CPreA : L→ L
CPreA (q) = Max({s |∃ s′ ∈ q ∃σ ∈ Σ : s = cpreA

σ (s′)})

Monotonicity: q v q′⇒ CPreA (q)v CPreA (q′)
follows from subset inclusion order and Def. of cpreA

σ (s)

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 17 / 31



Monotone function on antichains CPreA (q)

Definition
The concept of predecessors is extended to antichains by:

CPreA : L→ L
CPreA (q) = Max({s |∃ s′ ∈ q ∃σ ∈ Σ : s = cpreA

σ (s′)})

Monotonicity: q v q′⇒ CPreA (q)v CPreA (q′)

follows from subset inclusion order and Def. of cpreA
σ (s)

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 17 / 31



Monotone function on antichains CPreA (q)

Definition
The concept of predecessors is extended to antichains by:

CPreA : L→ L
CPreA (q) = Max({s |∃ s′ ∈ q ∃σ ∈ Σ : s = cpreA

σ (s′)})

Monotonicity: q v q′⇒ CPreA (q)v CPreA (q′)
follows from subset inclusion order and Def. of cpreA

σ (s)

February 2017 Felix Freyland – Fixpoint Antichain Algorithm 17 / 31



Monotone function on antichains CPreA (q)

Example: CPreA ({{1}})

we start with the antichain {{1}}
calculate cprea({1}) = {1} and cpreb({1}) = {1,2}
CPreA ({{1}}) = Max({{1,2},{1}) = {{1,2}}
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The general idea

Start with antichain F = {Fin} and set Frontier = F

Repeatedly compute F = F tCPreA (Frontier) in a loop
Tarski’s Fixpoint Theorem implies that the monotone function
CPreA (q) on a complete lattice has a least fixpoint
Thus after some iteration n, F stops growing, i.e. Fn = Fn−1

Iff {Init} v F A is not universal.
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Algorithm 0

Initialization

We start with the antichain of the set of non accepting states

F ←{Fin}
Frontier ← F
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Algorithm 1

First Iteration

s1,s2,s3 are cpreσ (s) for all σ and all s ∈ Frontier

Frontier = CPreA (Frontier) = {s1,s2}
F ← F tFrontier
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Algorithm 2

Second Iteration

s4,s5,s6 are cpre(s) for all σ and all s ∈ Frontier

Frontier = CPreA (Frontier) = {s4,s6}
F ← F tFrontier
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Algorithm Termination

Termination

The Algorithm computes a series of antichains
q0 v q1 v ·· · v qn = F where qi = CPreA (qi−1)t{Fin}

Tarski’s Fixpoint Theorem implies that every monotone function
on a complete lattice has a least fixpoint F .
Lang(A ) 6= Σ∗⇔{Init} v F
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Comparison of Classical and Antichain Algorithm

Theorem
For the familiy of Ak , k ≥ 2 with k +1 states, the Backward
Antichain Algorithm is polynomial in k, whereas the classical subset
construction algorithm is exponential in k
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Classical

Classical

DFA of 2k+1 states
2k reachable states, which are all accepting.
Algorithm traverses the tree of 2k accepting states
runtime is exponential in k
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Comparison of Classical and Antichain Algorithm

Antichain Algorithm

Starts with initial antichain q0 = {{k}}
In first iteration q1 = CPre({{k}})t{{k}}= {{k−1,k}}
In each iteration:
qi+1 = CPre(qi)t{{lk}}, = {{k− (i +1),k− i, . . . ,k}} for i < k
Stops after k iterations with qk = qk−1 = {{1, . . . ,k}}
Checks in each Iteration {{l0}} v qi in linear time
The computation of the CPre() in each iteration takes linear time
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Conclusion

The Backward antichain fixpoint algorithm is considerably faster
for a certain family of NFA

Empirical comparisons of antichain and classical algorithm on
randomly generated NFA show, that antichain is up to 200 times
faster.
The higher the density of accepting states the more
advantageous is the antichain approach.
Antichain algorithms are also applied to other problems like
language inclusion
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