# Tutorials for Decision Procedures <br> Exercise sheet 4 

## Exercise 1: Prenex Normal Form

Transform the following formula into prenex normal form:

$$
F:(\exists z \cdot((\forall x \cdot q(x, z)) \rightarrow p(x, g(y), z))) \wedge \neg(\forall z \cdot \neg(\exists x \cdot q(f(x, y), z)))
$$

## Exercise 2: Induction in $T_{\text {PA }}$

Prove the $T_{\mathrm{PA}}$-validity of the following formula using the semantic tableaux. Write down each proof step explicitly. Besides introducing axioms, you are allowed to introduce formulae that you have previously proven as $T_{\mathrm{PA}}$-valid. Note, that you may not assume commutativity, associativity, etc. Only use the Peano-axioms and the axioms from $T_{\mathrm{E}}$. You need the induction axiom.

$$
F: \forall x .0+x=x
$$

## Exercise 3: Integer Arithmetic

Consider the $T_{\mathbb{Z}}$-formula $F: \exists x . \forall y . \neg(y+1=x)$.
(a) Convert $F$ into an equisatisfiable $T_{\mathbb{N}}$-formula $G$.
(b) Prove unsatisfiability of $G$ using the semantic tableaux method. You may assume that associativity and commutativity of addition hold.
(c) Prove validity of the $T_{\mathbb{N}}$-formula $\exists x \cdot \forall y$. $\neg(y+1=x)$.

