

J. Hoenicke T. Schindler 15.11.2016 submit until 22.11.2016, 14:15

Tutorials for Decision Procedures Exercise sheet 5

Exercise 1: Semantic Argument in $T_{\mathbb{R}}$

Show the $T_{\mathbb{R}}$ -validity of the following formula using the semantic argument.

 $\forall x. \ x \cdot x \ge 0$

Write down every step explicitly. Besides introducing axioms, you are allowed to introduce formulae that you have previously proven as $T_{\mathbb{R}}$ -valid. Additionally, you may use the following derived facts without proving them:

$$\forall x. \ 0 \ge x \to -x \ge 0 \\ \forall x. \ (-x) \cdot (-x) = x \cdot x$$

Exercise 2: $T_{\mathbb{N}}$ vs. $T_{\mathbb{Q}}$ vs. $T_{\mathbb{R}}$

Show validity of the following formula in each of the three theories $T_{\mathbb{N}}$, $T_{\mathbb{Q}}$, and $T_{\mathbb{R}}$ using semantic tableaux.

$$\neg (1+1=0)$$

Exercise 3: Semantic Argument in Theories

Argue the validity of the following formulae in the combination of the theories T_{E} , $T_{\mathbb{Q}}$, T_{cons} , and T_{A} . You can use all axioms of these four theories. You can use abbreviations as in the slides or the book for introducing theory axioms.

(a)
$$f(x+y) \neq f(x) \rightarrow y \neq 0$$

(b)
$$z = \operatorname{cons}(x, y) \to \operatorname{car}(z) = x$$

(c)
$$a\langle i \triangleleft a[i] \rangle [j] = a[j]$$

(d) $(\forall x.f(f(x)) = x + 2) \land f(0) = 5 \rightarrow f(2) = 7$