J. Hoenicke
15.11.2016
T. Schindler

Tutorials for Decision Procedures

Exercise sheet 5

Exercise 1: Semantic Argument in $T_{\mathbb{R}}$

Show the $T_{\mathbb{R}}$-validity of the following formula using the semantic argument.

$$
\forall x . x \cdot x \geq 0
$$

Write down every step explicitly. Besides introducing axioms, you are allowed to introduce formulae that you have previously proven as $T_{\mathbb{R}^{2}}$-valid. Additionally, you may use the following derived facts without proving them:

$$
\begin{aligned}
& \forall x .0 \geq x \rightarrow-x \geq 0 \\
& \forall x .(-x) \cdot(-x)=x \cdot x
\end{aligned}
$$

Exercise 2: $T_{\mathbb{N}}$ vs. $T_{\mathbb{Q}}$ vs. $T_{\mathbb{R}}$
Show validity of the following formula in each of the three theories $T_{\mathbb{N}}, T_{\mathbb{Q}}$, and $T_{\mathbb{R}}$ using semantic tableaux.

$$
\neg(1+1=0)
$$

Exercise 3: Semantic Argument in Theories

Argue the validity of the following formulae in the combination of the theories $T_{\mathrm{E}}, T_{\mathbb{Q}}$, $T_{\text {cons }}$, and T_{A}. You can use all axioms of these four theories. You can use abbreviations as in the slides or the book for introducing theory axioms.
(a) $f(x+y) \neq f(x) \rightarrow y \neq 0$
(b) $z=\operatorname{cons}(x, y) \rightarrow \operatorname{car}(z)=x$
(c) $a\langle i \triangleleft a[i\rangle\rangle[j]=a[j]$
(d) $(\forall x \cdot f(f(x))=x+2) \wedge f(0)=5 \rightarrow f(2)=7$

