Tutorials for Decision Procedures

Exercise sheet 6

Exercise 1: Quantifier Elimination for $T_{\mathbb{Q}}$ (4 Points)

Apply quantifier elimination to the following $\Sigma_{\mathbb{Q}}$-formulae:
(a) $\exists y \cdot(x=2 y \wedge y<x)$
(b) $\forall y \cdot(25<x+2 y \vee x+2 y<25)$
(c) $\forall x \cdot \exists y \cdot(y>x \wedge-y<x)$
(d) $\forall x .(x>0 \leftrightarrow \exists y \cdot(x>y \wedge-x<y))$

Exercise 2: Sufficient Set (4 Points)

For $T_{\mathbb{Q}}$ the algorithm in the lecture examines terms $\frac{s+t}{2}$ for all $s, t \in S$. Suppose we split up S in S_{A}, S_{B}, S_{C} depending on whether the term t comes from an (A) $x<t$, (B) $t<x$, or (C) $x=t$ literal. Based on this distinction, give a smaller set of terms that is still sufficient.

Exercise 3: Implementing Quantifier Elimination for $T_{\mathbb{Q}}$ (6 Bonus Points)

Implement the quantifier elimination algorithm for $T_{\mathbb{Q}}$ from the lecture. SMTInterpol can be started with a special -script option giving a different solver file. This way you do not need to take care of parsing and most other technicalities. A template file, which also contains the NNF-conversion and some more hints, and starting instructions are given on the website.

