|
FREIBURG

2

=)
J. Hoenicke 17.01.2017
T. Schindler submit until 24.01.2017, 14:15

Tutorials for Decision Procedures
Exercise sheet 12

Exercise 1: DPLL(T)

In the last lecture we presented the CDCL algorithm in the form of the six rules Decide,
Propagate , Conflict , Explain, Learn, Backtrack.

In the lecture on propositional logic we presented the same algorithm as a functional
program (printed below).

Which lines of the functional code correspond to which of the six rules? (There may not
always be an exact correspondence, in such cases please add a short explanation.)

let rec DPLL =

let PROP U =
let ¢ = CHOOSE U N unassigned in
val[(] :=T

let ' = DPLL in
if (C = satisfiable)
satisfiable
else
val[{] := undef
if ((¢C)C
else U\ {lUuC\ {¢}
if conflictclauses # ()
CHOOSE conflictclauses
else if unitclauses # ()
PROP (CHOOSE unitclauses)
else if coreclauses # ()
let ¢ = CHOOSE (| coreclauses) N unassigned in
val[(] == T
let C = DPLL in
if (C = satisfiable) satisfiable

else
val[{] := undef
if ((¢C)C

else LEARN C;PROP ('
else satisfiable



Exercise 2: DPLL(7j)
Consider the following formula

(<1l 5 z<y) Ny+z<z A z>20A (z>21 - z+2<y)

(a) Compute the propositional core in CNF.

(b) Run the DPLL(T) algorithm by repeatedly applying the rules from the lecture. Use
the notation introduced on slides 317 - 320 to record the single steps. Is the formula
satisfiable?

Exercise 3: DPLL(7},)
Use DPLL(T}4) to decide satisfiabilty of formula Fg on slide 260 in the slide set on the
array theory (printed below). Use the notation on slides 317 - 320 as in exercise 2.

(A#k = a[A] = 0[A])
(k#k — alk] = b[k])

bkl =v N d'[j] #blj] A d'[k] =
[A] = alA])
(k#k — d[k] = alk])

A
A
A
ANAN£k — d
A
A
N



