
J. Hoenicke
T. Schindler

17.01.2017
submit until 24.01.2017, 14:15

Tutorials for Decision Procedures
Exercise sheet 12

Exercise 1: DPLL(T)
In the last lecture we presented the CDCL algorithm in the form of the six rules Decide,
Propagate , Conflict , Explain, Learn, Backtrack.
In the lecture on propositional logic we presented the same algorithm as a functional
program (printed below).
Which lines of the functional code correspond to which of the six rules? (There may not
always be an exact correspondence, in such cases please add a short explanation.)

let rec dpll =
let prop U =
let ` = choose U ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable)
satisfiable

else

val[`] := undef
if (` /∈ C) C

else U \ {`} ∪ C \ {`}
if conflictclauses 6= ∅
choose conflictclauses

else if unitclauses 6= ∅
prop (choose unitclauses)

else if coreclauses 6= ∅
let ` = choose (

⋃
coreclauses) ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable) satisfiable
else

val[`] := undef
if (` /∈ C) C
else learn C;prop C

else satisfiable



Exercise 2: DPLL(TQ)
Consider the following formula

(z ≤ 1 → x ≤ y) ∧ y + z ≤ x ∧ z ≥ 0 ∧ (z ≥ 1 → x+ z ≤ y)

(a) Compute the propositional core in CNF.

(b) Run the DPLL(T) algorithm by repeatedly applying the rules from the lecture. Use
the notation introduced on slides 317 - 320 to record the single steps. Is the formula
satisfiable?

Exercise 3: DPLL(TA)
Use DPLL(TA) to decide satisfiabilty of formula F6 on slide 260 in the slide set on the
array theory (printed below). Use the notation on slides 317 - 320 as in exercise 2.

(λ 6= k → a[λ] = b[λ])

∧ (k 6= k → a[k] = b[k])

∧ (j 6= k → a[j] = b[j])

∧ b[k] = v ∧ a′[j] 6= b[j] ∧ a′[k] = v

∧ (λ 6= k → a′[λ] = a[λ])

∧ (k 6= k → a′[k] = a[k])

∧ (j 6= k → a′[j] = a[j])

∧ λ 6= k ∧ λ 6= j


