
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2016/17

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 1 / 436

Craig Interpolation

Introduction

Given an unsatisfiable formula of the form:

F ∧ G

Can we find a “smaller” formula that explains the conflict?

I.e., a formula implied by F that is inconsistent with G?

Under certain conditions, there is an interpolant I with

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 380 / 436

Craig Interpolation

A craig interpolant I for an unsatisfiable formula F ∧ G is

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Craig interpolants exists in many theories and fragments:

First-order logic.

Quantifier-free FOL.

Quantifier-free fragment of TE.

Quantifier-free fragment of TQ.

Quantifier-free fragment of T̂Z (augmented with divisibility).

However, QF fragment of TZ does not allow Craig interpolation.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 381 / 436

Program correctness

Consider this path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
i := `

assume i ≤ u

assume a[i] 6= e

i := i + 1

assume i ≤ u

@ 0 ≤ i ∧ i < |a|

Single Static Assingment (SSA)
replaces assignments by assumes:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 382 / 436

Program correctness and Interpolants

If program contains only assumes, the VC looks like

VC : P → (F1 → (F2 → (F3 → . . . (Fn → Q) . . .)))

Using ¬(F → G) ⇔ F ∧ ¬G compute negation:

¬VC : P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q

If verification condition is valid ¬VC is unsatisfiable. We can compute
interpolants for any program point, e.g. for

P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 383 / 436

Verification Condition and Interpolants

Consider the path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

The negated VC is unsatisfiable:

0 ≤ ` ∧ u < |a| ∧ i1 = `

∧ i1 ≤ u ∧ a[i1] 6= e ∧ i2 = i1 + 1

∧ i2 ≤ u ∧ (0 > i2 ∨ i2 ≥ |a|)

The interpolant I for the red and
blue part is

i1 ≥ 0 ∧ u < |a|

This is actually the loop invariant
needed to prove the assertion.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 384 / 436

Computing Interpolants

Suppose F1 ∧ Fn ∧ G1 ∧ Gn

How can we compute an interpolant?

The algorithm is dependent on the theory and the fragment.

We will show an algorithm for

Quantifier-free conjunctive fragment of TE.
Quantifier-free conjunctive fragment of TQ.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 385 / 436

Computing Interpolants for TE

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gn is unsat

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,

there is a disequality v 6= w and

v ,w have the same representative.

Example:

v 6= w ∧ x = y ∧ y = z ∧ z = u ∧ w = s ∧ t = z ∧ s = t ∧ v = x

v x y

z u

s tw

6=

The Interpolant “summarizes” the red edges: I : v 6= s ∧ x = t
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 386 / 436

Edges in Congruence Closure Graph

Problem: Congruence closure graph draws edges between representatives
instead of the equal terms. This makes finding the paths harder.

Solution: Change merge algorithm:

Make one of the terms the representative by inverting edges to root

Draw outgoing edge from the new representative to the equal term

Every term still has only one outgoing equality edge.

x y

+

+

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 387 / 436

Computing Interpolants for TE

Given conjunctive formula:

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gm

The following algorithm can be used unless there is a congruence edge:

Build the congruence closure graph. Edges Fi are colored red, Edges
Gj are colored blue.

Add (colored) disequality edge. Find circle and remove all other edges.

Combine maximal red paths, remove blue paths.

The F paths start and end at shared symbols.
Interpolant is the conjunction of the corresponding equalities.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 388 / 436

Handling Congruence Edges (Case 1)

Both side of the congruence edge belong to G .

i3 = i2 ∧ x 6= y ∧ f (i1) = x ∧ f (i4) = y ∧ i1 = i2 ∧ i3 = i4

f

yx

f

i4

i3i2

i1

Interpolant:
i2 = i3 ∧ x 6= y

Follow the path that connects the
arguments.

Also add summarized edges for that path.

Treat the congruence edge as blue edge
(ignore it).

Interpolant is conjunction of all summarized
paths.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 389 / 436

Handling Congruence Edges (Case 2)

Both side of the congruence edge belong to different formulas.

f (i1) = x ∧ i2 = i1 ∧ i3 = i2 ∧ f (i3) 6= x

f

x

f

i3

i2

i1

f

Interpolant: x = f (i2).

Function symbol a must be shared.

Follow the path that connects the
arguments.

Find first change from red to blue.

Lift function application on that term.

Summarize x = f (i1) ∧ i1 = i2 by
x = f (i2).

Compute remaining interpolant as usual.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 390 / 436

Handling Congruence Edges (Case 3)

Both side of the congruence edge belong to F .

f (i1) = x ∧ f (i4) = y ∧ i1 = i2 ∧ i3 = i4 ∧ i3 = i2 ∧ x 6= y

f

yx

f

i4

i3i2

i1

Interpolant:
i2 = i3 → x = y

Follow the path that connects the
arguments.

Find the first and last terms i2, i3 where
color changes.

Treat congruence edge as red edge and
summarize path.

The summary only holds under i2 = i3,i.e.,
add i2 = i3 → x = y to interpolants.

Summarize remaining path segments as
usual.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 391 / 436

Computing Interpolants for TQ

First apply Dutertre/de Moura algorithm.

Non-basic variables x1, . . . , xn.

Basic variables y1, . . . , ym.

yi =
∑

aijxj

Conjunctive formula
y1 ≤ b1 . . . ym′ ≤ bm′ ∧ ym′+1 ≤ bm′+1 . . . ym ≤ bm.

The algorithm returns unsatisfiable if and only if there is a line:
x · · · x y · · · y y · · · y

...
yi/yi 0 · · · 0 −/0 · · · −/0 −/0 · · · −/0

...

yi =
∑
−a′kyk , a′k ≥ 0 and

∑
−a′kbk > bi

(the constraint yi ≤ bi is not satisfied)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 392 / 436

Computing Interpolants for TQ

The conflict is:

bi ≥ yi =
∑
−a′kyk ≥

∑
−a′kbk > bi

or
0 = yi +

∑
a′kyk ≤ bi +

∑
a′kbk < 0

We split the y variables into blue and red ones:

0 =
m′∑
k=1

aikyk +
m∑

k=m′+1

aikyk ≤
m′∑
k=1

aikbk +
m∑

k=m′+1

aikbk < 0

where a′k ≥ 0, (a′i = 1). The interpolant I is the red part:

m′∑
k=1

aikyk ≤
m′∑
k=1

aikbk

where the basic variables yk are replaced by their definition.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 393 / 436

Example

x1 + x2 ≤ 3 ∧ x1 − x2 ≤ 1 ∧ x3 − x1 ≤ 1 ∧ x3 ≥ 4

y1 := x1 + x2 b1 := 3 y3 := −x1 + x3 b3 := 1

y2 := x1 − x2 b1 := 1 y4 := −x3 b4 := −4

Algorithm ends with the tableaux

1 1 -4
y2 y3 y4 β

y1 -1 -2 -2 5
x1 0 -1 -1 3
x2 -1 -1 -1 2
x3 0 0 -1 4

Conflict is 0 = y1 + y2 + 2y3 + 2y4 ≤ 3 + 1 + 2 − 8 = −2.
Interpolant is: y1 + y2 ≤ 3 + 1
or (substituting non-basic vars): 2x1 ≤ 4.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 394 / 436

Correctness

Fk : yk :=
n∑

j=0

akjxj ≤ bk , (k=1,...,m) Gk : yk :=
n∑

j=0

akjxj ≤ bk , (k=m′,...,m)

Conflict is 0 =
m′∑
k=1

a′kyk +
m∑

k=m′+1

a′kyk ≤
m′∑
k=1

a′kbk +
m∑

k=m′+1

a′kbk < 0

After substitution the red part
m′∑
k=1

a′kyk ≤
m′∑
k=1

a′kbk becomes

I :
n∑

j=1

(
m′∑
k=1

a′kakj

)
xj ≤

m′∑
k=1

a′kbk .

F ⇒ I (sum up the inequalities in F with factors a′k).
I ∧ G ⇒ ⊥ (sum up I and G with factors a′k to get 0 ≤

∑m
k=1 a

′
kbk < 0).

Only shared symbols in I: 0 =
∑m′

k=1 akja
′
kxj +

∑m
k=m′+1 akja

′
kxj .

If the left sum is not zero, the right sum is not zero and xj appears in F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 395 / 436

Computing Interpolants for DPLL(T)

A proof of unsatisfiability is a resolution tree:

⊥

p

q ∨ p

r ∨ p r ∨ q

s ∨ r ∨ q s ∨ q

q ∨ p

p

s

r ∨ s r ∨ s

q ∨ r ∨ s q ∨ r

s ∨ p

where each node is generated by the rule

` ∨ C1 ` ∨ C2

C1 ∨ C2

The leaves are (trivial) consequences of F ∧ G .

Therefore, every node is a consequence.

Therefore, the root node ⊥ is a consequence.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 396 / 436

Interpolants for Conflict Clauses

Key Idea: Compute Interpolants for conflict clauses:
Split C into CF and CG (if literal appear in F and G put it in CG).

The conflict clause follows from the original formula:

F ∧ G ⇒ CF ∨ CG

Hence, the following formula is unsatisfiable.

F ∧ ¬CF ∧ G ∧ ¬CG

An interpolant IC for C is the interpolant of the above formula. IC
contains only symbols shared between F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 397 / 436

McMillan’s algorithm

Assign all literals to either F or G .

> : (I1 ∧ I2) ∨ (I1 ∧ I3 ∧ s)

p : I1 ∧ I2

q, p : I1

r , p : ⊥ r , q : I1

s, r , q : I1s, q : >

q, p : I2

p : I1 ∧ I3 ∧ s

s : s ∨ (I1 ∧ I3)

r , s : s r , s : I1 ∧ I3

q, r , s : I1q, r : I3

s, p : s

Compute interpolants for the leaves.
Then, for every resolution step compute interpolant as

`F ∧ C1 : I1 `F ∧ C2 : I2

C1 ∧ C2 : I1 ∨ I2

`G ∧ C1 : I1 `G ∧ C2 : I2

C1 ∧ C2 : I1 ∧ I2

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 398 / 436

Computing Interpolants for Conflict Clauses

There are several points where conflict clauses are returned:

Conflict clauses is returned by tcheck.
Then theory must give an interpolant.
Conflict clauses comes from F .
Then F ⇒ CF ∨ CG .
Hence, (F ∧ ¬CF) ⇒ CG . Also, CG ∧ G ∧ ¬CG is unsatisfiable
Interpolant is CG .
Conflict clauses comes from G .
Then CG = C , G ⇒ CG .
Hence, (G ∧ ¬CG) is unsatisfiable. Interpolant is >.
Conflict clause comes from resolution on `.
Then there is a unit clause U = ` ∨ U ′ with interpolant IU
and conflict clause C = ¬` ∨ C ′ with interpolant IC .

If ` ∈ F , set IU′∨C ′ = IU ∨ IC
If ` ∈ G , set IU′∨C ′ = IU ∧ IC

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 399 / 436

Computing Interpolants for DPLL(T)

The previous algorithm can compute interpolant for each conflict clause.
The final conflict clause returned is ⊥.
I⊥ is an interpolant of F ∧ G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 400 / 436

Computing Interpolants for Theory Combinations

Unfortunately, it is not that easy. . .
. . . because equalities shared by Nelson-Oppen can contain red and blue
symbols simultaneously.

Example:

F : t ≤ 2a ∧ 2a ≤ s ∧ f (a) = q

G : s ≤ 2b ∧ 2b ≤ t ∧ f (b) 6= q

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 401 / 436

Nelson-Oppen proof

Purifying the example gives:

ΓE : f (a) = q ∧ f (b) 6= q

ΓQ : t ≤ 2a ∧ 2a ≤ s ∧ s ≤ 2b ∧ 2b ≤ t

Shared variables V = {a, b}
Nelson-Oppen proceeds as follows

1 ΓQ propagates a = b.

2 ΓE ∪ a = b is unsatisfiable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 402 / 436

Conflicts

ΓE : f (a) = q ∧ f (b) 6= q

ΓQ : t ≤ 2a ∧ 2a ≤ s ∧ s ≤ 2b ∧ 2b ≤ t

N-O introduces three literals: a = b, a ≤ b, a ≥ b.
Theory conflicts:

2b ≤ t ∧ t ≤ 2a ∧ ¬(b ≤ a)

2a ≤ s ∧ s ≤ 2b ∧ ¬(a ≤ b)

a ≤ b ∧ b ≤ a ∧ a 6= b

a = b ∧ f (a) = q ∧ f (b) 6= q

How can we compute interpolants for the conflicts?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 403 / 436

Interpolant with a = b

What is an interpolant of a = b ∧ f (a) = q ∧ f (b) 6= q?

Key Idea: Split
a = b

into
a = x1 ∧ x1 = b where x1 shared

f

q

f

a x1 b

f

6=
a = x1 ∧ f (a) = q ∧
x1 = b ∧ f (b) 6= q

Interpolant: f (x1) = q

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 404 / 436

Interpolant with a 6= b

What is an interpolant of a 6= b ∧ a = s ∧ b = s?

Key Idea: Split
a 6= b

into
eq(x1, a) ∧ ¬eq(x1, b) where x1 shared, eq a predicate

eq eq

•

a x1

s

eq

b

6=
eq(x1, a) = • ∧ a = s ∧
eq(x1, b) 6= • ∧ b = s

Interpolant: eq(x1, s)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 405 / 436

Resolving on a = b

Consider the resolution step

a = b ∨ a 6= s ∨ b 6= s a 6= b ∨ f (a) 6= q ∨ f (b) = q

f (a) 6= q ∨ f (b) = q ∨ a 6= s ∨ b 6= s

How to combine the interpolants eq(x1, s) and f (x1) = q?

f

q

f

a s b

f

6=
f (a) = q ∧ a = s ∧
f (b) 6= q ∧ s = b

Interpolant: f (s) = q

eq(x1, s) indicates that x1 should be replaced by s.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 406 / 436

Resolution rule for a = b

The interpolation rule is

a = b ∨ C1 : I1[eq(x , s1)] . . . [eq(x , sn)] a 6= b ∨ C2 : I2(x)

C1 ∨ C2 : I1[I2(s1)] . . . [I2(sn)]

In our example

¬(a 6= b ∧ a = s ∧ b = s) : eq(x1, s)
¬(a = b ∧ f (a) = q ∧ f (b) 6= q) : q = f (x1)

¬(f (a) = q ∧ f (b) 6= q ∧ a = s ∧ b = s) : q = f (s)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 407 / 436

Example

a = f (f (a)) ∧ a = x ∧ p(f (a)) ∧ b = x ∧ f (b) = f (f (b)) ∧ ¬p(b)

a

f

f

b

f

fp p

•

x

6=

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 408 / 436

Example: Proof Lemmas

a = f (f (a)) ∧ a = x ∧ p(f (a)) ∧ b = x ∧ f (b) = f (f (b)) ∧ ¬p(b)

Prove using the following lemmas:

F1 : a = x ∧ x = b → f (a) =x1 f (b) : eq(x1, f (x))

F2 : f (a) =x1 f (b) → f (f (a)) =x2 f (f (b)) : eq(x2, f (x1))

F3 : f (a) =x1 f (b) = f (f (b)) =x2

f (f (a)) = a = x = b → f (a) =x3 b : eq(x3, x1) ∧ x2 = x

F4 : f (a) =x3 b ∧ p(f (a)) → p(b) : p(x3)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 409 / 436

Example: Annotating Proof with Interpolants

F1 : a = x ∧ x = b → f (a) =x1 f (b): eq(x1, f (x))

F2 : f (a) =x1 f (b) → f (f (a)) =x2 f (f (b)): eq(x2, f (x1))

F3 : f (a) =x1 f (b) = f (f (b)) =x2

f (f (a)) = a = x = b → f (a) =x3 b: eq(x3, x1) ∧ x2 = x

F4 : f (a) =x3 b ∧ p(f (a)) → p(b): p(x3)

p(f (x)) ∧ f (f (x)) = x

eq(x3, f (x)) ∧ f (f (x)) = x

F1 : eq(x1, f (x)) eq(x3, x1) ∧ f (x1) = x

F2 : eq(x2, f (x1)) F3 : eq(x3, x1) ∧ x2 = x

F4 : p(x3)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 410 / 436

Example: Checking Interpolants

a = f (f (a)) ∧ a = x ∧ p(f (a)) ∧ b = x ∧ f (b) = f (f (b)) ∧ ¬p(b)

Interpolant: p(f (x)) ∧ f (f (x)) = x

F → I : Substitute a = x into other atoms.

I ∧ G → ⊥: b = x ∧ f (f (x)) = x ∧ ¬p(b) implies ¬p(f (f (x))).
With b = x , f (b) = f (f (b)) this implies ¬p(f (x)).
This contradicts p(f (x)).

Symbol condition: p, f , x are shared.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 411 / 436

Back to the Nelson–Oppen Example

ΓE : f (a) = q ∧ f (b) 6= q

ΓQ : t ≤ 2a ∧ 2a ≤ s ∧ s ≤ 2b ∧ 2b ≤ t

Theory conflicts:

2b ≤ t ∧ t ≤ 2a ∧ ¬(b ≤ a)

2a ≤ s ∧ s ≤ 2b ∧ ¬(a ≤ b)

a ≤ b ∧ b ≤ a ∧ a 6= b

a = b ∧ f (a) = q ∧ f (b) 6= q

How can we compute interpolants for the conflicts?

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 412 / 436

Interpolant with a > b

What is an interpolant of 2a ≤ s ∧ s ≤ 2b ∧ a > b

Split
a > b

into
a ≥ x1 ∧ x1 > a where x1 shared

2a − s ≤ 0 · 1
s − 2b ≤ 0 · 1
x1 − a ≤ 0 · 2
b − x1 < 0 · 2

0 < 0

2a − s ≤ 0 · 1
x1 − a ≤ 0 · 2

2x1 − s ≤ 0

Interpolant: 2x1 − s ≤ 0.
We need the term 2x1 − s later; we write interpolant as:

LA(2x1 − s, 2x1 − s ≤ 0)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 413 / 436

Interpolant with a < b

What is an interpolant of t ≤ 2a ∧ 2b ≤ t ∧ a < b

Split
a < b

into
a ≤ x2 ∧ x2 < b where x2 shared

t − 2a ≤ 0 · 1
2b − t ≤ 0 · 1
a − x2 ≤ 0 · 2
x2 − b < 0 · 2

0 < 0

t − 2a ≤ 0 · 1
a − x2 ≤ 0 · 2

t − 2x2 ≤ 0

Interpolant: t − 2x2 ≤ 0.
We need the term t − 2x2 later; we write interpolant as:

LA(t − 2x2, t − 2x2 ≤ 0)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 414 / 436

Interpolant of Trichotomy

What is an interpolant of a ≤ b ∧ b ≤ a ∧ a 6= b

a ≤ x1 ∧ x2 ≤ a ∧ eq(x3, a) ∧ x1 ≤ b ∧ b ≤ x2 ∧ ¬eq(x3, b)

Manually we find the interpolant

x2 − x1 < 0 ∨ (x2 − x1 ≤ 0 ∧ eq(x3, x2))

Here x2 − x1 is the “critical term”; Interpolant:

LA(x2 − x1, x2 − x1 < 0 ∨ (x2 − x1 ≤ 0 ∧ eq(x3, x2)))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 415 / 436

Combining Interpolants

Magic rule:

a ≤ b ∨ C1 : LA(s1 + c1x1,F1(x1)) a > b ∨ C2 : LA(s2 − c2x1,F2(x2))

C1 ∨ C2 : LA(c2s1 + c1s2, c2s1 + c1s2 < 0 ∨ (F1(s2/c2) ∧ F2(s2/c2)))

Example:

a ≤ b ∨ 2a > s ∨ s > 2b : LA(2x1 − s, 2x1 − s ≤ 0)
a > b ∨ a < b ∨ a = b : LA(x2 − x1, x2 − x1 < 0 ∨

(x2 − x1 ≤ 0 ∧ eq(x3, x2)))

a < b ∨ a = b ∨ 2a > s ∨ s > 2b : I3

I3 : LA(2x2 − s, 2x2 − s < 0 ∨ (2x2 − s ≤ 0 ∧ eq(x3, x2)))‘

(simplifying x2 < x2 to ⊥ and x2 ≤ x2 to >).

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 416 / 436

Example continued

Magic rule:

a ≤ b ∨ C1 : LA(s1 + c1x1,F1(x1)) a > b ∨ C2 : LA(s2 − c2x1,F2(x2))

C1 ∨ C2 : LA(c2s1 + c1s2, c2s1 + c1s2 < 0 ∨ (F1(s2/c2) ∧ F2(s2/c2)))

a < b ∨ a = b ∨ 2a > s ∨ s > 2b : LA(2x2 − s, 2x2 − s < 0 ∨
(2x2 − s ≤ 0 ∧ eq(x3, x2)))

a ≥ b ∨ t < 2a ∨ 2b < s : LA(t − 2x1, t − 2x1 ≤ 0)

a = b ∨ 2a > s ∨ s > 2b
∨ t > 2a ∨ t > 2b : I4

I4 : LA(t − s, t − s < 0 ∨ (t − s ≤ 0 ∧ eq(x3, t/2)))

The critical term t − s does not contain an auxiliary and can be removed.

I4 : t − s < 0 ∨ (t − s ≤ 0 ∧ eq(x3, t/2))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 417 / 436

Example continued (with equality)

a = b ∨ 2a > s ∨ s > 2b
∨ t > 2a ∨ t > 2b

:
t − s < 0 ∨
(t − s ≤ 0 ∧ eq(x3, t/2))

a 6= b ∨ f (a) 6= q ∨ f (b) = q : q = f (x3)

2a > s ∨ s > 2b
∨ t > 2a ∨ t > 2b

∨ f (a) 6= q ∨ f (b) = q
:

t − s < 0 ∨
(t − s ≤ 0 ∧ q = f (t/2))

The interpolant of

2a ≤ s ∧ t ≤ 2a ∧ f (a) = q ∧ s ≤ 2b ∧ 2b ≤ t ∧ f (b) 6= q

is
t − s < 0 ∨ (t − s ≤ 0 ∧ q = f (t/2))

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 418 / 436

	Program Correctness
	Total Correctness

	Craig Interpolation

