
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Winter Term 2016/17

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 1 / 436

Theories

Theories

In first-order logic function symbols have no predefined meaning:

The formula 1 + 1 = 3 is satisfiable.

We want to fix the meaning for some function symbols.
Examples:

Equality theory

Theory of natural numbers

Theory of rational numbers

Theory of arrays or lists

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 95 / 436

First-Order Theories

Definition (First-order theory)

A First-order theory T consists of

A Signature Σ - set of constant, function, and predicate symbols

A set of axioms AT - set of closed (no free variables) Σ-formulae

A Σ-formula is a formula constructed of constants, functions, and
predicate symbols from Σ, and variables, logical connectives, and
quantifiers

The symbols of Σ are just symbols without prior meaning

The axioms of T provide their meaning

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 96 / 436

Theory of Equality TE

Signature Σ= : {=, a, b, c, · · · , f , g , h, · · · , p, q, r , · · · }

=, a binary predicate, interpreted by axioms.

all constant, function, and predicate symbols.

Axioms of TE :

1 ∀x . x = x (reflexivity)

2 ∀x , y . x = y → y = x (symmetry)

3 ∀x , y , z . x = y ∧ y = z → x = z (transitivity)

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 97 / 436

Axiom Schemata

Congruence and Equivalence are axiom schemata.

4 for each positive integer n and n-ary function symbol f ,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → f (x1, . . . , xn) = f (y1, . . . , yn)

(congruence)

5 for each positive integer n and n-ary predicate symbol p,
∀x1, . . . , xn, y1, . . . , yn.

∧
i xi = yi → (p(x1, . . . , xn) ↔ p(y1, . . . , yn))

(equivalence)

For every function symbol there is an instance of the congruence axiom
schemata.
Example: Congruence axiom for binary function f2:
∀x1, x2, y1, y2. x1 = y1 ∧ x2 = y2 → f2(x1, x2) = f2(y1, y2)

ATE
contains an infinite number of these axioms.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 98 / 436

T -Validity and T -Satisfiability

Definition (T -interpretation)

An interpretation I is a T -interpretation, if it satisfies all the axioms of T .

Definition (T -valid)

A Σ-formula F is valid in theory T (T -valid, also T |= F),
if every T -interpretation satisfies F .

Definition (T -satisfiable)

A Σ-formula F is satisfiable in T (T -satisfiable),
if there is a T -interpretation that satisfies F

Definition (T -equivalent)

Two Σ-formulae F1 and F2 are equivalent in T (T -equivalent),
if F1 ↔ F2 is T -valid,

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 99 / 436

Example: TE-validity

Semantic argument method can be used for TE

Prove

F : a = b ∧ b = c → g(f (a), b) = g(f (c), a) TE-valid.

Suppose not; then there exists a TE-interpretation I such that I 6|= F .
Then,

1. I 6|= F assumption
2. I |= a = b ∧ b = c 1, →
3. I 6|= g(f (a), b) = g(f (c), a) 1, →
4. I |= ∀x , y , z . x = y ∧ y = z → x = z transitivity
5. I |= a = b ∧ b = c → a = c 4, 3 × ∀{x 7→ a, y 7→ b, z 7→ c}
6a I 6|= a = b ∧ b = c 5, →
7a I |= ⊥ 2 and 6a contradictory

6b. I |= a = c 4, 5, (5, →)
7b. I |= a = c → f (a) = f (c) (congruence), 2 × ∀
8ba. I 6|= a = c · · · I |= ⊥
8bb. I |= f (a) = f (c) 7b, →
9bb. I |= a = b 2, ∧
10bb. I |= a = b → b = a (symmetry), 2 × ∀
11bba. I 6|= a = b · · · I |= ⊥
11bbb. I |= b = a 10bb, →
12bbb. I |= f (a) = f (c) ∧ b = a → g(f (a), b) = g(f (c), a) (congruence), 4 × ∀
. . . 13 I |= g(f (a), b) = g(f (c), a) 8bb, 11bbb, 12bbb

3 and 13 are contradictory. Thus, F is TE-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 100 / 436

Decidability of TE

Is it possible to decide TE -validity?

TE -validity is undecidable.

If we restrict ourself to quantifier-free formulae we get decidability:

For a quantifier-free formula TE -validity is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 101 / 436

Fragments of Theories

A fragment of theory T is a syntactically-restricted subset of formulae of
the theory.

Example: quantifier-free fragment of theory T is the set of
quantifier-free formulae in T .

A theory T is decidable if T |= F (T -validity) is decidable for every
Σ-formula F ,

i.e., there is an algorithm that always terminate with “yes”,
if F is T -valid, and “no”, if F is T -invalid.

A fragment of T is decidable if T |= F is decidable for every Σ-formula F
in the fragment.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 102 / 436

Natural Numbers and Integers

Natural numbers N = {0, 1, 2, · · · }
Integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }

Three variations:

Peano arithmetic TPA: natural numbers with addition and
multiplication

Presburger arithmetic TN: natural numbers with addition

Theory of integers TZ: integers with +,−, >

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 103 / 436

Peano Arithmetic TPA (first-order arithmetic)

Signature: ΣPA : {0, 1, +, ·, =}

Axioms of TPA: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

6 ∀x . x · 0 = 0 (times zero)

7 ∀x , y . x · (y + 1) = x · y + x (times successor)

Line 3 is an axiom schema.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 104 / 436

Expressiveness of Peano Arithmetic

3x + 5 = 2y can be written using ΣPA as

x + x + x + 1 + 1 + 1 + 1 + 1 = y + y

We can define > and ≥: 3x + 5 > 2y write as
∃z . z 6= 0 ∧ 3x + 5 = 2y + z

3x + 5 ≥ 2y write as ∃z . 3x + 5 = 2y + z

Examples for valid formulae:

Pythagorean Theorem is TPA-valid
∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xx + yy = zz

Fermat’s Last Theorem is TPA-valid (Andrew Wiles, 1994)
∀n. n > 2 → ¬∃x , y , z . x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ xn + yn = zn

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 105 / 436

Expressiveness of Peano Arithmetic (2)

In Fermat’s theorem we used xn, which is not a valid term in ΣPA.
However, there is the ΣPA-formula EXP[x , n, r] with

1 EXP[x , 0, r] ↔ r = 1

2 EXP[x , i + 1, r] ↔ ∃r1. EXP[x , i , r1] ∧ r = r1 · x

EXP[x , n, r] : ∃d ,m. (∃z . d = (m + 1)z + 1)∧
(∀i , r1. i < n ∧ r1 < m ∧ (∃z . d = ((i + 1)m + 1)z + r1)→

r1x < m ∧ (∃z . d = ((i + 2)m + 1)z + r1 · x))∧
r < m ∧ (∃z . d = ((n + 1)m + 1)z + r)

Fermat’s theorem can be stated as:

∀n. n > 2 → ¬∃x , y , z , rx , ry . x 6= 0 ∧ y 6= 0 ∧ z 6= 0∧
EXP[x , n, rx] ∧ EXP[y , n, ry] ∧ EXP[z , n, rx + ry]

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 106 / 436

Decidability of Peano Arithmetic

Gödel showed that for every recursive function f : Nn → N there is a
ΣPA-formula F [x1, . . . , xn, r] with

F [x1, . . . , xn, r] ↔ r = f (x1, . . . , xn)

TPA is undecidable. (Gödel, Turing, Post, Church)

The quantifier-free fragment of TPA is undecidable. (Matiyasevich, 1970)

Remark: Gödel’s first incompleteness theorem

Peano arithmetic TPA does not capture true arithmetic:
There exist closed ΣPA-formulae representing valid propositions of number
theory that are not TPA-valid.
The reason: TPA actually admits nonstandard interpretations

For decidability: no multiplication
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 107 / 436

Presburger Arithmetic TN

Signature: ΣN : {0, 1, +, =} no multiplication!

Axioms of TN: axioms of TE ,

1 ∀x . ¬(x + 1 = 0) (zero)

2 ∀x , y . x + 1 = y + 1 → x = y (successor)

3 F [0] ∧ (∀x . F [x] → F [x + 1]) → ∀x . F [x] (induction)

4 ∀x . x + 0 = x (plus zero)

5 ∀x , y . x + (y + 1) = (x + y) + 1 (plus successor)

3 is an axiom schema.

TN-satisfiability and TN-validity are decidable. (Presburger 1929)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 108 / 436

Theory of Integers TZ

Signature:
ΣZ : {. . . ,−2,−1, 0, 1, 2, . . . ,−3·,−2·, 2·, 3·, . . . , +, −, =, >}
where

. . . ,−2,−1, 0, 1, 2, . . . are constants

. . . ,−3·,−2·, 2·, 3·, . . . are unary functions
(intended meaning: 2 · x is x + x)

+,−,=, > have the usual meanings.

Relation between TZ and TN

TZ and TN have the same expressiveness:

For every ΣZ-formula there is an equisatisfiable ΣN-formula.

For every ΣN-formula there is an equisatisfiable ΣZ-formula.

ΣZ-formula F and ΣN-formula G are equisatisfiable iff:

F is TZ-satisfiable iff G is TN-satisfiable

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 109 / 436

Example: ΣN-formula to ΣZ-formula.

Example: The ΣN-formula

∀x . ∃y . x = y + 1

is equisatisfiable to the ΣZ-formula:

∀x . x > −1 → ∃y . y > −1 ∧ x = y + 1.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 110 / 436

Example: ΣZ-formula to ΣN-formula

Consider the ΣZ-formula
F0 : ∀w , x . ∃y , z . x + 2y − z − 7 > −3w + 4

Introduce two variables, vp and vn (range over the nonnegative integers) for
each variable v (range over the integers) of F0

F1 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

(xp − xn) + 2(yp − yn) − (zp − zn) − 7 > −3(wp − wn) + 4

Eliminate − by moving to the other side of >

F2 :
∀wp,wn, xp, xn. ∃yp, yn, zp, zn.

xp + 2yp + zn + 3wp > xn + 2yn + zp + 7 + 3wn + 4

Eliminate > and numbers:

F3 :

∀wp,wn, xp, xn. ∃yp, yn, zp, zn. ∃u.
¬(u = 0) ∧ xp + yp + yp + zn + wp + wp + wp

= xn + yn + yn + zp + wn + wn + wn + u
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

which is a ΣN-formula equisatisfiable to F0.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 111 / 436

Reducing TZ to TN.

To decide TZ-validity for a ΣZ-formula F :

transform ¬F to an equisatisfiable ΣN-formula ¬G ,

decide TN-validity of G .

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 112 / 436

Rationals and Reals

Σ = {0, 1, +, −, ·, =, ≥}

Theory of Reals TR (with multiplication)

x · x = 2 ⇒ x = ±
√

2

Theory of Rationals TQ (no multiplication)

2x︸︷︷︸
x+x

= 7 ⇒ x =
2

7

Note: Strict inequality

∀x , y . ∃z . x + y > z

can be expressed as

∀x , y . ∃z . ¬(x + y = z) ∧ x + y ≥ z

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 113 / 436

Theory of Reals TR

Signature: ΣR : {0, 1, +, −, ·, =, ≥} with multiplication.

Axioms of TR: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)
2 ∀x , y . x + y = y + x (+ commutativity)
3 ∀x . x + 0 = x (+ identity)
4 ∀x . x + (−x) = 0 (+ inverse)
5 ∀x , y , z . (x · y) · z = x · (y · z) (· associativity)
6 ∀x , y . x · y = y · x (· commutativity)
7 ∀x . x · 1 = x (· identity)
8 ∀x . x 6= 0 → ∃y . x · y = 1 (· inverse)
9 ∀x , y , z . x · (y + z) = x · y + x · z (distributivity)
10 0 6= 1 (separate identies)
11 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)
12 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)
13 ∀x , y . x ≥ y ∨ y ≥ x (totality)
14 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)
15 ∀x , y . x ≥ 0 ∧ y ≥ 0 → x · y ≥ 0 (· ordered)
16 ∀x . ∃y . x = y · y ∨ x = −y · y (square root)
17 for each odd integer n,
∀x0, . . . , xn−1. ∃y . yn + xn−1yn−1 · · · + x1y + x0 = 0 (at least one root)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 114 / 436

Example

F : ∀a, b, c. b2 − 4ac ≥ 0 ↔ ∃x . ax2 + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g. in 4ac ,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2a. I |= bb − 4ac ≥ 0 1,↔
3a. I 6|= ∃x .axx + bx + c = 0 1,↔
4a. I |= ∃y . bb − 4ac = y2 ∨ bb − 4ac = −y2 square root, ∀
5a. I |= d2 = bb − 4ac ∨ d2 = −(bb − 4ac) 2, ∃
6a. I |= 2a · e = 1 · inverse, ∀, ∃
7a. I 6|= a((−b + d)e)2 + b(−b + d)e + c = 0 6a, ∃
8a. I 6|= ab2e2 − 2abde2 + ad2e2

−b2e + bde + c = 0 distributivity
9a. I |= d2 ≥ 0 see exercise
10a. I |= dd = bb − 4ac ∨ on 4a, 2a, 9a
11a. I 6|= ab2e2 − bde + a(b2 − 4ac)e2

−b2e + bde + c = 0 8a,6a, 10a, congruence
12a. I 6|= 0 = 0 11a, distributivity, inverse
13a. I |= ⊥ 12a, reflexivity

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 115 / 436

Example

F : ∀a, b, c. bb − 4ac ≥ 0 ↔ ∃x . axx + bx + c = 0 is TR-valid.
As usual: x2 abbreviates x · x , we omit ·, e.g., in 4ac,

4 abbreviate 1 + 1 + 1 + 1 and a − b abbreviates a + (−b).

1. I 6|= F assumption
2b. I 6|= bb − 4ac ≥ 0 1,↔
3b. I |= ∃x .axx + bx + c = 0 1,↔
4b. I |= aff + bf + c = 0 8b,∃
5b. I |= (2af + b)2 = bb − 4ac field axioms, TE

6b. I |= (2af + b)2 ≥ 0 see exercise
7b. I |= bb − 4ac ≥ 0 5b, 6b, equivalence
8b. I |= ⊥ 2b, 7b

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 116 / 436

Decidability of TR

TR is decidable (Tarski, 1930)

High time complexity: O(22
kn

)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 117 / 436

Theory of Rationals TQ

Signature: ΣQ : {0, 1, +, −, =, ≥} no multiplication!
Axioms of TQ: axioms of TE ,

1 ∀x , y , z . (x + y) + z = x + (y + z) (+ associativity)

2 ∀x , y . x + y = y + x (+ commutativity)

3 ∀x . x + 0 = x (+ identity)

4 ∀x . x + (−x) = 0 (+ inverse)

5 1 ≥ 0 ∧ 1 6= 0 (one)

6 ∀x , y . x ≥ y ∧ y ≥ x → x = y (antisymmetry)

7 ∀x , y , z . x ≥ y ∧ y ≥ z → x ≥ z (transitivity)

8 ∀x , y . x ≥ y ∨ y ≥ x (totality)

9 ∀x , y , z . x ≥ y → x + z ≥ y + z (+ ordered)

10 For every positive integer n:
∀x . ∃y . x = y + · · · + y︸ ︷︷ ︸

n

(divisible)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 118 / 436

Expressiveness and Decidability of TQ

Rational coefficients are simple to express in TQ

Example: Rewrite
1

2
x +

2

3
y ≥ 4

as the ΣQ-formula

x + x + x + y + y + y + y ≥ 1 + 1 + · · · + 1︸ ︷︷ ︸
24

TQ is decidable
Efficient algorithm for quantifier free fragment

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 119 / 436

Recursive Data Structures (RDS)

Data Structures are tuples of variables.
Like struct in C, record in Pascal.

In Recursive Data Structures, one of the tuple elements can be the
data structure again.
Linked lists or trees.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 120 / 436

RDS theory of LISP-like lists, Tcons

Σcons : {cons, car, cdr, atom, =}

where
cons(a, b) – list constructed by adding a in front of list b
car(x) – left projector of x : car(cons(a, b)) = a
cdr(x) – right projector of x : cdr(cons(a, b)) = b
atom(x) – true iff x is a single-element list

Axioms: The axioms of ATE
plus

∀x , y . car(cons(x , y)) = x (left projection)

∀x , y . cdr(cons(x , y)) = y (right projection)

∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 121 / 436

Axioms of Theory of Lists Tcons

1 The axioms of reflexivity, symmetry, and transitivity of =

2 Congruence axioms

∀x1, x2, y1, y2. x1 = x2 ∧ y1 = y2 → cons(x1, y1) = cons(x2, y2)
∀x , y . x = y → car(x) = car(y)
∀x , y . x = y → cdr(x) = cdr(y)

3 Equivalence axiom

∀x , y . x = y → (atom(x) ↔ atom(y))

4 ∀x , y . car(cons(x , y)) = x (left projection)

5 ∀x , y . cdr(cons(x , y)) = y (right projection)

6 ∀x . ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

7 ∀x , y . ¬atom(cons(x , y)) (atom)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 122 / 436

Decidability of Tcons

Tcons is undecidable
Quantifier-free fragment of Tcons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 123 / 436

Example: Tcons-Validity

We argue that the following Σcons-formula F is Tcons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→a = b

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= a = b 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)

Lines 6 and 10 are contradictory. Therefore, F is Tcons-valid.
Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 124 / 436

Theory of Arrays TA

Signature: ΣA : {·[·], ·〈· / ·〉, =},
where

a[i] binary function –
read array a at index i (“read(a,i)”)

a〈i / v〉 ternary function –
write value v to index i of array a (“write(a,i ,e)”)

Axioms

1 the axioms of (reflexivity), (symmetry), and (transitivity) of TE

2 ∀a, i , j . i = j → a[i] = a[j] (array congruence)

3 ∀a, v , i , j . i = j → a〈i / v〉[j] = v (read-over-write 1)

4 ∀a, v , i , j . i 6= j → a〈i / v〉[j] = a[j] (read-over-write 2)

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 125 / 436

Equality in TA

Note: = is only defined for array elements

a[i] = e → a〈i / e〉 = a

not TA-valid, but

a[i] = e → ∀j . a〈i / e〉[j] = a[j] ,

is TA-valid.

Also
a = b → a[i] = b[i]

is not TA-valid: We only axiomatized a restricted congruence.

TA is undecidable
Quantifier-free fragment of TA is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 126 / 436

Theory of Arrays T=
A (with extensionality)

Signature and axioms of T=
A are the same as TA, with one additional

axiom
∀a, b. (∀i . a[i] = b[i]) ↔ a = b (extensionality)

Example:
F : a[i] = e → a〈i / e〉 = a

is T=
A -valid.

T=
A is undecidable

Quantifier-free fragment of T=
A is decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 127 / 436

Combination of Theories

How do we show that

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

is (TE ∪ TZ)-unsatisfiable?

Or how do we prove properties about
an array of integers, or
a list of reals . . . ?

Given theories T1 and T2 such that

Σ1 ∩ Σ2 = {=}

The combined theory T1 ∪ T2 has

signature Σ1 ∪ Σ2

axioms A1 ∪ A2

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 128 / 436

Nelson & Oppen

qff = quantifier-free fragment

Nelson & Oppen showed that

if satisfiability of qff of T1 is decidable,
satisfiability of qff of T2 is decidable, and
certain technical requirements are met

then satisfiability of qff of T1 ∪ T2 is decidable.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 129 / 436

Lists with equality T=
cons

T=
cons : TE ∪ Tcons

Signature: ΣE ∪ Σcons

(this includes uninterpreted constants, functions, and predicates)

Axioms: union of the axioms of TE and Tcons

T=
cons is undecidable

Quantifier-free fragment of T=
cons is efficiently decidable

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 130 / 436

Example: T=
cons-Validity

We argue that the following Σ=
cons-formula F is T=

cons-valid:

F :
car(a) = car(b) ∧ cdr(a) = cdr(b) ∧ ¬atom(a) ∧ ¬atom(b)
→f (a) = f (b)

1. I 6|= F assumption
2. I |= car(a) = car(b) 1, →, ∧
3. I |= cdr(a) = cdr(b) 1, →, ∧
4. I |= ¬atom(a) 1, →, ∧
5. I |= ¬atom(b) 1, →, ∧
6. I 6|= f (a) = f (b) 1, →
7. I |= cons(car(a), cdr(a)) = cons(car(b), cdr(b))

2, 3, (congruence)
8. I |= cons(car(a), cdr(a)) = a 4, (construction)
9. I |= cons(car(b), cdr(b)) = b 5, (construction)
10. I |= a = b 7, 8, 9, (transitivity)
11. I |= f (a) = f (b) 10, (congruence)

Lines 6 and 11 are contradictory. Therefore, F is T=
cons-valid.

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 131 / 436

First-Order Theories

Theory Decidable QFF Dec.

TE Equality − 3

TPA Peano Arithmetic − −
TN Presburger Arithmetic 3 3

TZ Linear Integer Arithmetic 3 3

TR Real Arithmetic 3 3

TQ Linear Rationals 3 3

Tcons Lists − 3

T=
cons Lists with Equality − 3

TA Arrays − 3

T=
A Arrays with Extensionality − 3

Jochen Hoenicke (Software Engineering) Decision Procedures Winter Term 2016/17 132 / 436

	Theories
	Theory of Equality
	T-Validity and T-Satisfiability
	Natural Numbers and Integers
	Rationals and Reals
	Recursive Data Structures
	Arrays
	Combination of Theories
	Decidability

