
–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

Software Design, Modelling and Analysis in UML

Lecture 7: Class Diagrams II

2016-11-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
7

–
2

0
16

-1
1-

17
–

S
co

n
te

n
t

–

2/30

• Rhapsody Demo I: Class Diagrams

• Visibility

• Intuition

• Context, OCL with Visibility

• What is Visibility Good For?

• Associations

• Overview & Plan

• (Temporarily) Extend Signature

• From Diagrams to Signatures

• What if Things are Missing?

Rhapsody Demo I: Class Diagrams

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

3/30

Class Diagram Semantics Cont’d

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

4/30

–
7

–
2

0
16

-1
1-

17
–

S
cd

se
m

–

5/30

Semantical Relevance

–
6

–
2

0
16

-1
1-

15
–

S
e

xt
si

g
–

14/31

• The semantics (or meaning) of an extended object system signature S

wrt. a structure D is the set of system states �D

S .

• The semantics (or meaning) of an extended object system signature S

is the set of sets of system states wrt. some structure of S , i.e. the set

{�D

S | D is structure of S }.

Which of the following aspects is semantically relevant,
i.e. does contribute to the constitution of system states?

A class

• has a set of stereotypes,

• has a name,

• belongs to a package,

• can be abstract,

• can be active,

• has a set of attributes,

• has a set of operations (later).

Each attribute has

• a visibility,

• a name, a type,

• a multiplicity, an order,

• an initial value, and

• a set of properties,
such as readOnly, ordered, etc.

What About The Rest?

–
7

–
2

0
16

-1
1-

17
–

S
cd

se
m

–

6/30

• Classes:

• Stereotypes: Lecture 6

• Active: not represented in σ.

Later: relevant for behaviour, i.e., how system states evolve over time.

• Attributes:

• Initial value expression: not represented in σ.

Later: provides an initial value as effect of “creation action”.

• Visibility: not represented in σ.

Later: viewed as additional typing information for well-formedness of OCL expressions and actions.

• Properties: such as readOnly, ordered, composite (Deprecated in the standard.)

• readOnly — can be treated similar to visibility.

• ordered — not considered in our UML fragment (→ sets vs. sequences).

• composite — cf. lecture on associations.

Visibility

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

7/30

The Intuition by Example

–
7

–
2

0
16

-1
1-

17
–

S
vi

si
ty

p
–

8/30

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr0, ∅〉},
{C 7→ {n},D 7→ {x,m}}

C

D

ξ x : Int = expr
0

× •
n

0, 1

×

•
m

0, 1

c : C d1 : D

x = 1
d2 : D

n m

Which of the following two syntactically correct (?) OCL expressions
should we consider to be well-typed?

ξ = public ξ = private ξ = protected ξ = package

✔ ✔ later not

self C . n . x = 0 ✘ ✘

? ?

✔ ✔ later not

self D . m . x = 0 ✘ ✘

? ?

Context

–
7

–
2

0
16

-1
1-

17
–

S
vi

si
ty

p
–

9/30

S = ({Int}, {C,D}, {n : D0,1,m : D0,1,

〈x : Int , ξ, expr0, ∅〉},
{C 7→ {n},D 7→ {x,m}}

• By example:

C

D

− x : Int
n

0, 1
m

0, 1

self D . x > 0

self D . m . x > 0

self C . n . x > 0

• That is, whether an expression involving attributes with visibility is well-typed
depends on the class of the object which “tries to read out the value”.

• Visibility is ‘by class’ — not ‘by object’.

Attribute Access in Context

–
7

–
2

0
16

-1
1-

17
–

S
vi

si
ty

p
–

10/30

Recall: attribute access in OCL Expressions, C,D ∈ C .

v(expr1) : τC → τ(v)

r1(expr1) : τC → τD

r2(expr1) : τC → Set(τD)

• v : T ∈ atr(C), T ∈ T ,

• r1 : D0,1 ∈ atr(C),

• r2 : D∗ ∈ atr(C),

New rules for well-typedness considering visibility:

• v(w) : τC → T w : τC , v : T ∈ atr(C), T ∈ T

• r1(w) : τC → τD w : τC , r1 : D0,1 ∈ atr(C)

• r2(w) : τC → Set(τD) w : τC , r1 : D∗ ∈ atr(C)

• v(expr
1
(w)) : τC → T 〈v : T, ξ, expr

0
, P〉 ∈ atr(C), T ∈ T ,

expr
1
(w) : τC , w : τC1

and C1 = C , or ξ = +

• r1(expr1(w)) : τC → τD 〈r1 : D0,1, ξ, expr0
, P〉 ∈ atr(C),

expr
1
(w) : τC , w : τC1

and C1 = C , or ξ = +

• r2(expr1(w)) : τC → Set(τD) 〈r2 : D∗, ξ, expr0
, P〉 ∈ atr(C),

expr
1
(w) : τC , w : τC1

and C1 = C , or ξ = +

Example

–
7

–
2

0
16

-1
1-

17
–

S
vi

si
ty

p
–

11/30

(i) v(w) : τC → T w : τC , v : T ∈ atr(C), T ∈ T

(ii) r1(w) : τC → τD w : τC , r1 : D0,1 ∈ atr(C)

(iii) v(expr
1
(w)) : τC → T 〈v : T, ξ, expr

0
, P〉 ∈ atr(C), T ∈ T ,

expr
1
(w) : τC , w : τC1

and C1 = C , or ξ = +

(iv) r1(expr1(w)) : τC → τD 〈r1 : D0,1, ξ, expr0
, P〉 ∈ atr(C),

expr
1
(w) : τC , w : τC1

and C1 = C , or ξ = +

C

D

− x : Int
n

0, 1
m

0, 1

• self D . x > 0

• self D . m . x > 0

• self C . n . x > 0

The Semantics of Visibility

–
7

–
2

0
16

-1
1-

17
–

S
vi

si
ty

p
–

12/30

• Observation:

• Whether an expression does or does not respect visibility
is a matter of well-typedness only.

• We only evaluate (= apply I to) well-typed expressions.

→ We need not adjust the interpretation function I to support visibility.

Just decide: should we take visibility into account yes / no,
and check well-typedness by the new / old rules.

What is Visibility Good For?

–
7

–
2

0
16

-1
1-

17
–

S
vi

si
ty

p
–

13/30

• Visibility is a property of attributes —

C

D

− x : Int× •
n

0, 1

: C : D

x = 3

n
is it useful to consider it in OCL?

• In other words: given the diagram above,
is it useful to state the following invariant (even though x is private in D)

context C inv : n.x > 0 ?
It depends. (cf. OMG (2006), Sect. 12 and 9.2.2)

• Constraints and pre/post conditions:

• Visibility is sometimes not taken into account. To state “global” requirements,
it may be adequate to have a “global view”, i.e. be able to “look into” all objects.

• But: visibility supports “narrow interfaces”, “information hiding”, and similar good design
practices. To be more robust against changes, try to state requirements only in the terms
which are visible to a class.

Rule-of-thumb: if attributes are important to state requirements on design models, leave
them public or provide get-methods (later).

• Guards and operation bodies:

• If in doubt, yes (= do take visibility into account).

Any so-called action language typically takes visibility into account.

Associations

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

14/30

Overview

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cp

la
n

–

15/30

• Class diagram:

C

v : Int
d : D∗

D

c : C0,1

Alternative presentation:

C

v : Int D

•×
d

∗

• ×c

0, 1

• Class diagram (with ternary association):

A

w : Int B

Z

a

∗

b

0, 1
z 1..5

r

• Signature:

S = ({Int}, {C,D}, {v : Int, d : D∗, c : C0,1},

{C 7→ {v, d}, D 7→ {c}})

• Signature: extend again to represent

• association r with

• association ends a, b, and z

(each with multiplicity, visibility, etc.)

• Example system state:

σ = {1C 7→ {v 7→ 27, d 7→ {5D, 7D}},

5D 7→ {c 7→ {1C}}, 7D 7→ {c 7→ {1C}}}

• Object diagram:

: C

v = 27

: D

: D

d

d

cc

• Example system state:

σ = {1A 7→ {w 7→ 13}, 1B 7→ ∅, 1Z 7→ ∅}

λ = { r 7→ {(1A, 1B , 1Z), (1A, 1B , 2Z)} }

• Object diagram: No. . .

Plan

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cp

la
n

–

16/30

(i) Study association syntax.

(ii) Extend signature accordingly.

(iii) Define (σ, λ) system states with

• objects in σ

(instances of classes),

• links in λ

(instances of associations).

(iv) Change syntax of OCL to
refer to association ends.

(v) Adjust interpretation I accordingly.

(vi) . . . go back to the special case of C0,1

and C∗ attributes.

• Class diagram (with ternary association):

A

w : Int B

Z

a

∗

b

0, 1
z 1..5

r

• Signature: extend again to represent

• association r with

• association ends a, b, and z

(each with multiplicity, visibility, etc.)

• Example system state:

σ = {1A 7→ {w 7→ 13}, 1B 7→ ∅, 1Z 7→ ∅}

λ = { r 7→ {(1A, 1B , 1Z), (1A, 1B , 2Z)} }

• Object diagram: No. . .

Associations: Syntax

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

17/30

UML Association Syntax Oestereich (2006)

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

18/30

Klasse1

rolle

1

Sichtbarkeit rolle

* {ordered}
«Stereotyp»
Beziehungsname

Multiplizität
Leserichtung

Klasse2

"Stecker"

Abhängige
Klasse

Unab-
hängige
Klasse

Abhängigkeit

Klasse1 Klasse2
Assoziation

Klasse1 Klasse2

qualifizierte Assoziation

Qualifizierer

Klasse1 Klasse2
Vererbung

Klasse1 Klasse2
Realisierung

Klasse1 Klasse2
gerichtete Assoziation

Ganzes
Teil

Aggregation

Existenz-
abhängiges

Teil

Komposition

Assoziations-
klasse

Klasse1 Klasse2
Attributierte Assoziation

Klasse1 Klasse2

Mehrgliedrige
Assoziation

Klasse3

Anbieter
Schnittstelle

Nutzer

More Association Syntax (OMG, 2011b, 61;43)

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

19/30

Figure 7.23 - Examples of navigable ends

b
A B

2..51..4

a

E F
2..5

f

1..4

e

C D
2..5

d

1..4

c

h
G H

2..51..4

g

I J
2..5

j

1..4

i

b
A B

2..51..4

a

E F
2..5

f

1..4

e

C D
2..5

d

1..4

c

h
G H

2..51..4

g

I J
2..5

j

1..4

i

Figure 7.19 - Graphic notation indicating exactly one association end owned by the association

A B
endA

*

endB

*BinaryAssociationAB

Figure 7.20 - Combining line path graphics

A B

A B

So, What Do We (Have to) Cover?

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

20/30

An association has

Klasse1 Klasse2
Assoziation

Klasse1 Klasse2

qualifizierte Assoziation

Qualifizierer

Realisierung

Klasse1 Klasse2
gerichtete Assoziation

Klasse1

rolle

1

Sichtbarkeit rolle

* {ordered}
«Stereotyp»
Beziehungsname

Multiplizität
Leserichtung

Klasse2

Ganzes
Teil

Aggregation

Existenz-
abhängiges

Teil

Komposition

Assoziations-
klasse

Klasse1 Klasse2
Attributierte Assoziation

Klasse1 Klasse2

Mehrgliedrige
Assoziation

Klasse3

• a name,

• a reading direction, and

• at least two ends.

Each end has

• a role name,

• a multiplicity,

• a set of properties,
such as unique, ordered, etc.

• a qualifier,

• a visibility,

• a navigability,

• an ownership,

• and possibly a diamond.

Wanted: places in the signature
to represent the information from the picture.

(Temporarily) Extend Signature: Associations

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

21/30

Only for the course of Lectures 7 – 9 we assume that each element in V is

• either a basic type attribute 〈v : T, ξ, expr
0
, Pv〉 with T ∈ T (as before),

• or an association of the form

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉,
...
〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• n ≥ 2 (at least two ends),

• r, rolei are just names, Ci ∈ C , 1 ≤ i ≤ n,

• the multiplicity µi is an expression of the form

µ ::= N..M | N..∗ | µ, µ (N,M ∈ N)

• Pi is a set of properties (as before),

• ξ ∈ {+,−,#,∼} (as before),

• νi ∈ {×,−, >} is the navigability,

• oi ∈ B is the ownership.

• N for N..N ,

• ∗ for 0..∗ (use with care!)

(Temporarily) Extend Signature: Associations

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

21/30

Only for the course of Lectures 7 – 9 we assume that each element in V is

• either a basic type attribute 〈v : T, ξ, expr
0
, Pv〉 with T ∈ T (as before),

• or an association of the form

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉,
...
〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

• n ≥ 2 (at least two ends),

• r, rolei are just names, Ci ∈ C , 1 ≤ i ≤ n,

• the multiplicity µi is an expression of the form

µ ::= N..M | N..∗ | µ, µ (N,M ∈ N)

• Pi is a set of properties (as before),

• ξ ∈ {+,−,#,∼} (as before),

• νi ∈ {×,−, >} is the navigability,

• oi ∈ B is the ownership.

Multiplicity abbreviations:

• N for N..N ,

• ∗ for 0..∗ (use with care!)

Temporarily (Lecture 7 – 9) Extended Signature

–
7

–
2

0
16

-1
1-

17
–

S
as

so
cs

y
n

–

22/30

Definition. An (Extended) Object System Signature (with Associations)
is a quadruple S = (T,C, V, atr) where

• . . .

• each element of V is

• either a basic type attribute 〈v : T, ξ, expr0, Pv〉 with T ∈ T

• or an association of the form

〈r : 〈role1 : C1, µ1, P1, ξ1, ν1, o1〉,
.
..
〈rolen : Cn, µn, Pn, ξn, νn, on〉〉

(ends with multiplicity µi , properties Pi , visibility ξi , navigability νi , ownership oi , 1 ≤ i ≤ n)

• . . .

• atr : C → 2{v∈V | v:T, T∈T } maps classes to basic type (!) attributes.

In other words:

• only basic type attributes “belong” to a class (may appear in atr(C)),

• associations are not “owned” by a class (not in any atr(C)), but “live on their own”.

Tell Them What You’ve Told Them. . .

–
7

–
2

0
16

-1
1-

17
–

S
tt

w
y

tt
–

28/30

• Class Diagrams in the Rhapsody Tool

• Visibility of attributes contributes to the well-typedness of
(among others) OCL expressions.

• Well-typedness depends on the context.

• We only interpret (= apply I to) well-typed OCL constraints.

• Sometimes we consider visibility,
sometimes we don’t.

• Associations can have any number (≥ 2) of Association Ends.

• For “things” missing in a diagram,
we have defaults (as with plain class diagrams).

References

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

29/30

References

–
7

–
2

0
16

-1
1-

17
–

m
ai

n
–

30/30

Oestereich, B. (2006). Analyse und Design mit UML 2.1, 8. Auflage. Oldenbourg, 8. edition.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

