Software Design, Modelling and Analysis in UML Lecture 8: Class Diagrams III

2016-11-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

-11-24 -

8 - 2016-11-24 -

Content

8 - 2016-11-24 - Scontent

- 8 - 2016-11-24 - main -

	Recall:	Associations
1		

- • Overview & Plan
- (Temporarily) Extend Signature

• From Class Diagrams to Signatures

└ • What if Things are Missing?

• Association Semantics

- **Links** in System States
- └ Associations and OCL

• The Rest

- → Visibility, Navigability
- Multiplicity, Properties,
- Ownership, "Diamonds"
- Back to the Main Track

3/34

Recall: Plan & Extended Signature

2016-11-24 -

6/34

Associations in Class Diagrams

2016-11-24 -

Association Example

Signature:

- 8 - 2016-11-24 - Sassoccd

$$\mathcal{S} = \left(\left\{ \left| ut \right\rangle, \left\{ C, D \right\}, \left\{ < x: \left| ut, +, M, \vartheta \right\rangle, \\ < r: < n: D, *, \left\{ uuique \right\}, +, >, 0 >, 0 \right\}, \\ < c: C, 0..*, \left\{ uuique \right\}, -, x, 1 > > \right\}, \\ \left\{ C' \mapsto \vartheta, \Box \mapsto \left\{ x \right\} \right\} \right)$$

D $\mapsto \left\{ x \right\} \right\}$

9/34

What If Things Are Missing?

Most components of associations or association end may be omitted. For instance (OMG, 2011b, 17), Section 6.4.2, proposes the following rules:

• Name: Use

 $A_\langle C_1\rangle_\cdots_\langle C_n\rangle$

if the name is missing.

Example:

C A_C_D for	C D
-------------	-----

- Reading Direction: no default.
- Role Name: use the class name at that end in lower-case letters

What If Things Are Missing?

• Multiplicity: 1

In my opinion, it's safer to assume 0..1 or * (for 0..*) if there are no fixed, written, agreed conventions ("expect the worst").

- Properties: Ø (in course: Eunique)
- Visibility: public

2016-11-24 -

• Navigability and Ownership: not so easy. (OMG, 2011b, 43)

"Various options may be chosen for showing navigation arrows on a diagram. In practice, it is often convenient to suppress some of the arrows and crosses and just show exceptional situations:

- Show all arrows and \times 's: Navigation and its absence are made completely explicit.
- Suppress all arrows and ×'s: No inference can be drawn about navigation.
 This is similar to any situation in which information is suppressed from a view.
- Suppress arrows for associations with navigability in both directions, and show arrows only for associations with one-way navigability.
 - In this case, the two-way navigability cannot be distinguished from situations where there is no navigation at all; however, the latter case occurs rarely in practice."

11/34

Wait, If Omitting Things...

 ...is causing so much trouble (e.g. leading to misunderstanding), why does the standard say "In practice, it is often convenient..."?

Is it a good idea to trade convenience for precision/unambiguity?

It depends.

2016-11-24 -

- Convenience as such is a legitimate goal.
- In UML-As-Sketch mode, precision "doesn't matter", so convenience (for writer) can even be a primary goal.
- In UML-As-Blueprint mode, precision is the primary goal. And misunderstandings are in most cases annoying.

But: (even in UML-As-Blueprint mode)

If all associations in your model have multiplicity *, then it's probably a good idea not to write all these *'s.

So: tell the reader about your convention and leave out the *'s.

13/34

Associations: Semantics

Recall: We consider associations of the following form:

 $\langle r: \langle role_1: C_1, \mu_1, P_1, \xi_1, \nu_1, o_1 \rangle, \dots, \langle role_n: C_n, \mu_n, P_n, \xi_n, \nu_n, o_n \rangle \rangle$

Only these parts are relevant for extended system states:

 $\langle r: \langle role_1: C_1, _, P_1, _, _ \rangle, \ldots, \langle role_n: C_n, _, P_n, _, _, _ \rangle$

(recall: we assume $P_1 = P_n = \{ unique \}$).

The UML standard thinks of associations as **n-ary relations** which "live on their own" in a system state.

That is, **links** (= association instances)

- do not belong (in general) to certain objects (in contrast to pointers, e.g.)
- are "first-class citizens" next to objects,
- are (in general) not directed (in contrast to pointers).

15/34

Links in System States

 $\langle r: \langle role_1: C_1, _, P_1, _, _, _ \rangle, \dots, \langle role_n: C_n, _, P_n, _, _, _ \rangle$

Definition. Let \mathscr{D} be a structure of the (extended) signature with associations $\mathscr{S} = (\mathscr{T}, \mathscr{C}, V, atr)$. A system state of \mathscr{S} wrt. \mathscr{D} is a pair (σ, λ) consisting of • a type-consistent mapping (as before) $\sigma : \mathscr{D}(\mathscr{C}) \not\rightarrow (atr(\mathscr{C}) \not\rightarrow \mathscr{D}(\mathscr{T})),$ • a mapping λ which maps each association $\langle r : \langle role_1 : C_1 \rangle, \dots, \langle role_n : C_n \rangle \rangle \in V$ to a relation $\lambda(r) \subseteq \mathscr{D}(C_1) \times \dots \times \mathscr{D}(C_n)$ (i.e. a set of type-consistent *n*-tuples of identities). Association / Link Example

Signature:

8 - 2016-11-24 - Sassocsem -

- 8 - 2016-11-24 - main -

$$\begin{aligned}
\mathcal{G} = \left(\{ lnt \}, \{A, Z, B \}, \{ \omega : lnt, \\ (, \\ (, \\ (< z: Z, 1..5, -, \{ unipm), x, 0 >, \\ (> < z: Z, 1..5, -, \{ unipm), x, 0 >, \\ (> < z: Z, 1..5, -, \{ unipm, \}, 2, 0 > \}, \\ \{A \mapsto \{ us \}, \{ Z \mapsto \emptyset, \{ B \mapsto \emptyset \} \} \\ \{A \mapsto \{ us \}, \{ Z \mapsto \emptyset, \{ B \mapsto \emptyset \} \} \\ \chi_{Z} \mapsto \{ u \mapsto 13 \}, \\ \chi_{Z} \mapsto \emptyset, \\ \chi_{Z} \mapsto \emptyset, \\ \chi_{B} \mapsto \emptyset, \\ \chi_{B} \mapsto \emptyset, \\ \chi_{A} \mapsto \emptyset \end{aligned}$$
System state:
$$\begin{aligned}
\varepsilon = \left\{ 1_{A} \mapsto \{ u \mapsto 2^{2} \}, \\ (A_{A}, 4_{Z}, 3_{B}), \\ (A_{A}, 4_{Z}, 5_{B}), \\ (A_{A}, 4_{Z}, 5_{B}), \\ (A_{A}, 4_{Z}, 3_{B}) \} \right\} \\ \chi_{E} \mapsto \emptyset, \\ \chi_{B} \mapsto \emptyset, \\ \chi_{B} \mapsto \emptyset, \\ \chi_{A} \mapsto \emptyset \end{aligned}$$

$$\begin{aligned}
\sum_{A \mapsto \{ u \in A, \{ u \in A,$$

Associations and OCL

Recall: OCL syntax as introduced in Lecture 3, interesting part:

	expr ::=	$= \dots r_1(expr_1) \\ r_2(expr_1) $	$\begin{array}{l} : \tau_C \to \tau_D \\ : \tau_C \to Set(\tau_D) \end{array}$	$r_1: D_{0,1} \in atr(C)$ $r_2: D_* \in atr(C)$	
Now be	comes				
	$expr ::= \dots$	$\mid role(expr_1) \\ \mid role(expr_1)$	$: \tau_C \to \tau_D : \tau_C \to Set(\tau_D)$	$\label{eq:multiplicative} \begin{split} \mu &= 01 \text{ or } \mu = 11 \\ \text{otherwise} \end{split}$	
if there $\langle r$	is $\langle r:\ldots,\langle rc$: $\ldots,\langle role':C$	$ble: D, \mu, _, _, _, _, _, _$	$_, _\rangle, \ldots, \langle role' : C, _, \\ \ldots, \langle role : D, \mu, _, _, _, _$	$\underline{\ }, \underline{\ }, \underline{\ }, \underline{\ }, \underline{\ }\rangle, \dots \rangle \in V$ or $\underline{\ }, \underline{\ }\rangle, \dots \rangle \in V, role \neq role$	e ′ .

Note:

- Association name as such does not occur in OCL syntax, role names do.
- $expr_1$ has to denote an object of a class which "participates" in the association.

19/34

OCL and Associations: Semantics

Now needed:

$$I[[role(expr_1)]]((\sigma,\lambda),\beta)$$

- We cannot simply write $\sigma(u)(role)$. Recall: role is (for the moment) not an attribute of object u (not in atr(C)).
- What we have is $\lambda(r)$ (with association name r, not with role name role!).

 $\langle r:\ldots,\langle role:D,\mu,_,_,_\rangle,\ldots,\langle role':C,_,_,_,_\rangle,\ldots\rangle$

But it yields a set of n-tuples, of which some relate u and some instances of D.

• *role* denotes the position of the *D*'s in the tuples constituting the value of *r*.

OCL and Associations: Semantics Cont'd

Assume $expr_1 : \tau_C$ for some $C \in \mathscr{C}$. Set $u_1 := I[[expr_1]]((\sigma, \lambda), \beta) \in \mathscr{D}(T_C)$.

•
$$I[[role(expr_1)]]((\sigma, \lambda), \beta) := \begin{cases} u & \text{, if } u_1 \in \operatorname{dom}(\sigma) \text{ and } L(role)(u_1, \lambda) = \{u\} \\ \bot & \text{, otherwise} \end{cases}$$

•
$$I[[role(expr_1)]]((\sigma, \lambda), \beta) := \begin{cases} L(role)(u_1, \lambda) & \text{, if } u_1 \in \operatorname{dom}(\sigma) \\ \bot & \text{, otherwise} \end{cases}$$

Given a set of n-tuples A,

 $A \downarrow i$ denotes the element-wise projection onto the *i*-th component.

21/34

OCL and Associations Semantics: Example

Associations: The Rest

23/34

The Rest

- 2016-11-24 -

Recapitulation: Consider the following association:

 $\langle r: \langle role_1: C_1, \mu_1, P_1, \xi_1, \nu_1, o_1 \rangle, \dots, \langle role_n: C_n, \mu_n, P_n, \xi_n, \nu_n, o_n \rangle \rangle$

- Association name r and role names / types role_i / C_i induce extended system states (σ, λ).
- Multiplicity μ is considered in OCL syntax.
- Visibility ξ / Navigability ν : well-typedness (in a minute).

Now the rest:

- 8 - 2016-11-24 -

- Multiplicity μ : we propose to view them as constraints.
- Properties P_i : even more typing.
- Ownership o: getting closer to pointers/references.
- Diamonds: exercise.

Navigability

Navigability is treated similar to visibility:

Using names of non-navigable association ends ($\nu = \times$) are forbidden.

Example: Given

the following OCL expression is not well-typed wrt. navigability,

 $\underbrace{\text{context } D \text{ inv}: role.x > 0}_{}$

The standard says: navigation is...

• '-': ...possible

• '>': ...efficient

So: In general, UML associations are different from pointers / references in general! But: Pointers / references can faithfully be modelled by UML associations.

• '×': ...not possible

25/34

Multiplicities as Constraints

Recall: Multiplicity is a term of the form $N_1..N_2, \ldots, N_{2k-1}..N_{2k}$ where $N_i \leq N_{i+1}$ for $1 \leq i \leq 2k$, $N_1, \ldots, N_{2k-1} \in \mathbb{N}$, $N_{2k} \in \mathbb{N} \cup \{*\}$.

Define $\mu_{\mathsf{OCL}}^C(role) :=$

 $\operatorname{context} C \operatorname{inv} : (N_1 \leq \operatorname{role} \rightarrow \operatorname{size}() \leq N_2) \text{ or } \dots \text{ or } (N_{2k-1} \leq \operatorname{role} \rightarrow \operatorname{size}() \leq N_{2k})$

for each $\langle r : \dots, \langle role : D, \mu, _, _, _ \rangle, \dots, \langle role' : C, _, _, _, _ \rangle, \dots \rangle \in V$ or

 $\langle r:\ldots,\langle role':C,_,_,_,_\rangle,\ldots,\langle role:D,\mu,_,_,_\rangle,\ldots\rangle\in V,$

with $role \neq role'$, if $\mu \neq 0..1$, $\mu \neq 1..1$, and

 $\mu_{\mathsf{OCL}}^C(role) := \mathsf{context} \ C \ \mathsf{inv} : \mathsf{not}(\mathsf{ocllsUndefined}(role))$

 $\text{if}\ \mu=1..1.$

Note: in *n*-ary associations with n > 2, there is redundancy.

Multiplicities as Constraints Example

27/34

Properties

2016-11-24 -

8 - 2016-11-24 -

We don't want to cover association **properties** in detail, only some observations (assume binary associations):

Property	Intuition	Semantical Effect
unique	one object has at most one <i>r</i> -link to a single other object	current setting
bag	one object may have multiple <i>r</i> -links to a sin- gle other object	have $\lambda(r)$ yield multisets
ordered, sequence	an <i>r</i> -link is a sequence of object identities (possibly including duplicates)	have $\lambda(r)$ yield sequences

Property OCL Typing of expression role(expr	·)
---	----

unique	$T_D \to Set(T_C)$
bag	$T_D \to Bag(T_C)$
ordered, sequence	$T_D \to Seq(T_C)$

For subsets, redefines, union, etc. see (?, 127).

Ownership

Intuitively it says:

Association r is not a "thing on its own" (i.e. provided by λ), but association end 'role' is owned by C (!). (That is, it's stored inside C object and provided by σ).

So: if multiplicity of role is 0..1 or 1..1, then the picture above is very close to concepts of pointers/references.

Actually, ownership is seldom seen in UML diagrams. Again: if target platform is clear, one may well live without (cf. (OMG, 2011b, 42) for more details).

Not clear to me:

8 - 2016-11-24 -

29/34

Back to the Main Track

Back to the main track:

Recall: on some earlier slides we said, the extension of the signature is **only** to study associations in "full beauty".

For the remainder of the course, we should look for something simpler...

Proposal:

2016-11-24 -

2016-11-24 -

• from now on, we only use associations of the form

(And we may omit the non-navigability and ownership symbols.)

- Form (i) introduces $role : C_{0,1}$, and form (ii) introduces $role : C_*$ in V.
- In both cases, $role \in atr(C)$.
- We drop λ and go back to our nice σ with $\sigma(u)(role) \subseteq \mathscr{D}(D)$.

31/34

Tell Them What You've Told Them...

- From class diagrams with (general) associations, we obtain extended signatures.
- Links (instances of associations) "live on their own" in the λ in extended system states (σ, λ).
- OCL considers role names, the semantics is (more or less) straightforward.
- The Rest:
 - navigability is treated like visibility,
 - view multiplicities as shorthand for constraints, \bigtriangledown
 - properties, ownership, "diamonds": exist

• Back to the main track:

For simplicity, let's restrict the following discussion to $C_{0,1}$ and C_* as before (now viewed as abbreviations for particular associations).

CX do Di do Di do C

References

33/34

References

8 - 2016-11-24 - main -

- 8 - 2016-11-24 - main -

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05. OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.