Software Design, Modelling and Analysis in UML Lecture 11: Core State Machines I

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- Recall: Basic Causality Model
- Event Pool
insert, remove, clear, ready.
- System Configuration
- implicit attributes:
stable, st, and friends.
- system state plus event pool
- Actions
- simple action language.
- transformer: effects of actions.

Roadmap: Chronologically

Syntax:
(i) UML State Machine Diagrams.
(ii) Def.: Signature with signals.
(iii) Def.: Core state machine.
(iv) Map UML State Machine Diagrams to core state machines.

Semantics:
The Basic Causality Model
(v) Def.: Ether (aka. event pool)
(vi) Def.: System configuration.
(vii) Def.: Event.
(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.
(x) Transition relation induced by core state machine.
(xi) Def.: step, run-to-completion step.
(xii) Later: Hierarchical state machines.

15.3.12 StateMachine (OMG, 2011b, 574)

Event occurrences are detected, dispatched, and then processed by the state machine, one at a time.

- The semantics of event occurrence processing is based on the run-to- completion assumption, interpreted as run-tocompletion processing.
- Run-to-completion processing means that an event [...] can only be taken from the pool and dispatched if the processing of the previous [...] is fully completed.
- The processing of a single event occurrence by a state machine is known as a run-to-completion step.
- Before commencing on a run-tocompletion step, a state machine is in astable state sonfiguration with all entry/exit/internal-activities (but not necessarily do-activities) completed.
- The same conditions apply after the run-to-completion step is completed.
- Thus, an event occurrence will never be processed [...] in some intermediate and inconsistent situation.
- [IOW,] The run-to-completion step is the passage between two stater configurations of the state machine. stasle
- The run-to-completion assumption simplifies the transition function of the StM, since concurrency conflicts are avoided during the processing of event, allowing the StM to safely complete its run-tocompletion step.
- The order of dequeuing is not defined, leaving open the possibility of modeling different priority-based schemes.
- Run-to-completion may be implemented in various ways. [...]

Ether

- The order of dequeuing is not defined, leaving open the possibility of modeling different(priority-based) schemes.

Ether and OMG (2011b)

The standard distinguishes (among others)

- SignalEvent (OMG, 2011b, 450) and Reception (OMG, 2011b, 447).

On SignalEvents, it says
A signal event represents the receipt of an asynchronous signal instance.
A signal event may, for example, cause a state machine to trigger a transition. (OMG, 2011b, 449) [...]

Semantic Variation Points

The means by which requests are transported to their target depend on the type of requesting action, the target, the properties of the communication medium, and numerous other factors.

In some cases, this is instantaneous and completely reliable while in others it may involve transmission delays of variable duration, loss of requests, reordering, or duplication.
(See also the discussion on page 421.) (OMG, 2011b, 450)

[^0]Often seen minimal requirement: order of sending by one object is preserved.

Ether aka. Event Pool

Definition. Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ be a signature with signals and \mathscr{D} a structure.

We call a tuple (Eth, ready, $\oplus, \ominus,[\cdot])$ an ether over \mathscr{S} and \mathscr{D} if and only if it provides for ane vent $\begin{gathered}\text { poon } \\ \varepsilon\end{gathered}$ - a ready operation which yields a set of events (i.e., signal instánces) that are ready for a given object, i.e.

$$
\text { ready : Eth } \times \mathscr{D}(\mathscr{C}) \rightarrow 2^{\mathscr{D}(\mathscr{E})}
$$

- a operation to insert an event for a given object, i.e.

$$
\oplus: E t h \times \mathscr{D}(\mathscr{C}) \times \mathscr{D}(\mathscr{E}) \rightarrow E t h
$$

- a operation to remove an event, i.e.

$$
\ominus: E t h \times \mathscr{D}(\mathscr{E}) \rightarrow E t h
$$

- an operation to clear the ether for a given object, i.e.

$$
[\cdot]: E t h \times \mathscr{D}(\mathscr{C}) \rightarrow \text { Eth. }
$$

Example: FIFO Queue

A (single, global, shared, reliable) FIFO queue is an ether:

- $E t h=(D(\varphi) \times D(\varepsilon))^{*}$
the set of finite sequences of pais $(u, e) \in D(\zeta) \times D(\varepsilon)$
- ready: Eth $\times \mathscr{D}(\mathscr{C}) \rightarrow 2^{\mathscr{D}(\mathscr{E})}$
$\left(\varepsilon, u_{2}\right) \mapsto \begin{cases}\left\{\left(u_{2}, e\right)\right\}, & \text { if } \varepsilon=\left(u_{2}, e\right) \cdot \varepsilon^{\prime} \\ \varnothing, & \text { otheresise }\end{cases}$
- $\oplus: E t h \times \mathscr{D}(\mathscr{C}) \times \mathscr{D}(\mathscr{E}) \rightarrow E t h$
$(\varepsilon, u, e) \mapsto \varepsilon_{,}(u, e)$
- $\ominus: E t h \times \mathscr{D}(\mathscr{E}) \rightarrow$ Eth
$(\varepsilon, e) \longmapsto \begin{cases}\varepsilon^{\prime}, & \text { if } \varepsilon=(u, e), \varepsilon^{\prime}, u \in D(e) \\ \varepsilon, & \text { otherise }\end{cases}$
- $[\cdot]:$ Eth $\times \mathscr{D}(\mathscr{C}) \rightarrow$ Eth $\quad[\cdot](\varepsilon, u):$
remore all (u,e) elements from the given $\varepsilon, e \in D(\varepsilon)$

Other Examples

- One FIFO queue per active object is an ether.

$$
E^{t h}=D(e) \rightarrow(D(e) \times D(\varepsilon))^{*}
$$

- One-place buffer.

$$
E t h=\epsilon \dot{u}(D(c) \times D(\varepsilon))
$$

- Priority queue.
- Multi-queues (one per sender).
- Trivial example: sink, "black hole".
- Lossy queue (\oplus needs to become a relation then).

System Configuration

Definition. Let $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}\right.$, att $\left.r_{0}, \mathscr{E}_{0}\right)$ be a signature with signals, \mathscr{D}_{0} a structure of $\mathscr{S}_{0},($ Eth, ready $, \oplus, \ominus,[\cdot])$ an ether over \mathscr{S}_{0} and \mathscr{D}_{0}.
Furthermore assume there is one core state machine M_{C} per class $C \in \mathscr{C}$.
A system configuration over $\mathscr{S}_{0}, \mathscr{D}_{0}$, and Eth is a pair
where a new to ape class

$$
\begin{aligned}
& (\sigma, \varepsilon) \in \Sigma_{S_{R}}^{D} \times E t h \quad \text { if Sol } \notin J_{0} \text { then } \\
& \text { od it dud use } \\
& D(\text { Boot })=\{0,1\}
\end{aligned}
$$

- $\mathscr{S}=\left(\mathscr{T}_{0} \dot{\cup}\left\{S_{M_{C}}^{\text {}} \mid C \in \mathscr{C}_{0}\right\}\right.$,

initial state

$$
\begin{aligned}
V_{0} & \dot{U}\{\langle\text { stable }: \text { Boole, }- \text {,true, } \emptyset\rangle\} \\
& \dot{U} \\
& \left\{\left\langle\text { st }_{C}: S_{M_{C}},+, s_{0}, \emptyset\right\rangle \mid C \in \mathscr{C}\right\} \\
& \dot{U}\left\{\left\langle\text { params }_{E}: E_{0,1},+, \emptyset, \emptyset\right\rangle \mid E \in \mathscr{E}_{0}\right\}, \\
\{C & \mapsto \text { atria }(C) \\
& \left.\left.\cup\{\text { stable }, \text { st }\} \cup\left\{\text { prams }_{E} \mid E \in \mathscr{E}_{0}\right\} \mid C \in \mathscr{C}\right\}, \quad \mathscr{E}_{0}\right)
\end{aligned}
$$

- $\mathscr{D}=\mathscr{D}_{0} \dot{\cup}\left\{S_{M_{C}} \mapsto S\left(M_{C}\right) \mid C \in \mathscr{C}\right\}$, and
- $\sigma(u)(r) \cap \mathscr{D}\left(\mathscr{E}_{0}\right)=\emptyset$ for each $u \in \operatorname{dom}(\sigma)$ and $r \in V_{0}$.

System Configuration: Example

$$
\text { - } \sigma(u)(r) \cap \mathscr{D}\left(\mathscr{E}_{0}\right)=\emptyset \text { for each } u \in \operatorname{dom}(\sigma) \text { and } r \in V_{0} \text {. }
$$

\langle signal \rangle F
$a:$ Int

$$
\mathcal{S} \mathcal{M}_{C}:
$$

$\int_{0}=\left(\left\{m_{n} t\right\}\right.$
$\{c\}$,
$\begin{aligned} & J=\left(\left\{\ln t, B_{0 o l}, S_{\mu_{C}}\right\},\right. \\ &\{C\},\end{aligned}$
$\sigma \in \sum_{\varphi}^{D}:$
$\{c\}$,
$\{x \cdot \ln t$,
$\{C\}$,
$V_{0} \cup\{$ stable: Boor, $\begin{aligned} V_{0} \cup\{ & \text { stable: Bor, } \\ & s_{c}: S_{M_{c}}, \\ & \text { paramo }: E_{0.1},\end{aligned}$ paramo $E: E_{0.1}$,
pardons $\left.: F_{0,1}\right\}$, $\left\{C \leftrightarrow\left\{x\right.\right.$, shale $s t_{c}$, pavane, paras $\mp\}$, $\operatorname{EH}\{b, c\}$,
$F \mapsto\{a\}\}$

$$
D\left(s_{\mu_{c}}\right)=\left\{\text { idle, } s_{2}, s_{3}\right\}
$$

$$
\begin{aligned}
& \mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, \text { atm }, \mathscr{E}_{0}\right), \mathscr{D}_{0} ; \quad(\sigma, \varepsilon) \in \Sigma_{\mathscr{S}}^{\mathscr{g}} \times \text { Eth } \text { where } \\
& \text { - } \mathscr{S}=\left(\mathscr{T}_{0} \dot{\cup}\left\{S_{M_{C}} \mid C \in \mathscr{C}\right\}, \quad \mathscr{C}_{0},\right. \\
& V_{0} \dot{\cup}\{\langle\text { stable : col, }- \text {, true, } \emptyset\rangle\} \dot{\cup}\left\{\left\langle s t_{C}: S_{M_{C}},+, s_{0}, \emptyset\right\rangle \mid C \in \mathscr{C}\right\} \\
& \dot{\cup}\left\{\left\langle\text { paras }_{E}: E_{0,1},+, \emptyset, \emptyset\right\rangle \mid E \in \mathscr{E}_{0}\right\}, \\
& \left.\left\{C \mapsto \operatorname{atr}_{0}(C) \cup\left\{\text { stable, st } C_{C}\right\} \cup\left\{\text { prams }_{E} \mid E \in \mathscr{E}_{0}\right\} \mid C \in \mathscr{C}\right\}, \mathscr{E}_{0}\right) \\
& \text { - } \mathscr{D}=\mathscr{D}_{0} \dot{\cup}\left\{S_{M_{C}} \mapsto S\left(M_{C}\right) \mid C \in \mathscr{C}\right\} \text {, and }
\end{aligned}
$$

- We start with some signature with signals $\mathscr{S}_{0}=\left(\mathscr{T}_{0}, \mathscr{C}_{0}, V_{0}, a t r_{0}, \mathscr{E}\right)$.
- A system configuration is a pair (σ, ε) which comprises a system state σ wrt. \mathscr{S} (not wrt. \mathscr{S}_{0}).
- Such a system state σ wrt. \mathscr{S} provides, for each object $u \in \operatorname{dom}(\sigma)$,
- values for the explicit attributes in V_{0},
- values for a number of implicit attributes, namely
- a stability flag, i.e. $\sigma(u)($ stable $)$ is a boolean value,
- a current (state machine) state, i.e. $\sigma(u)(s t)$ denotes one of the states of core state machine M_{C},
- a temporary association to access event parameters for each class, i.e. $\sigma(u)\left(\right.$ params $\left._{E}\right)$ is defined for each $E \in \mathscr{E}$.
- For convenience require: there is no link to an event except for params $_{E}$.

Stability

Definition.

Let (σ, ε) be a system configuration over some $\mathscr{S}_{0}, \mathscr{D}_{0}$, Eth.
We call an object $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}\left(\mathscr{C}_{0}\right)$ stable in σ if and only if
And unstable $\sigma(u)($ stable $)=1$
And unstable otherarise.

Where are we?

$\mathcal{S M}_{C}: s_{F / x:=0}^{E[n \neq \emptyset] / x:=x t^{1} ; n!E} s_{3} / n:=\emptyset, s_{2}$
$s_{1} \underset{/ p!F}{s_{2}}$

$: S \mathcal{M}_{D}$

Transformer

Recall

- The (simplified) syntax of transition annotations:
- Clear: \langle event \rangle is from \mathscr{E} of the corresponding signature.
- But: What are \langle guard \rangle and \langle action \rangle ?
- UML can be viewed as being parameterized in expression language (providing \langle guard \rangle) and action language (providing \langle action \rangle).
- Examples:
- Expression Language:
- OCD
- Java, C++, ...expressions
-...
- Action Language:
- UML Action Semantics, "Executable UML"
- Java, C++, ...statements (plus some event send action)
- ..
-

Needed: Semantics

OCR:

$$
J_{E q u}[\operatorname{expr}](\sigma, u):=
$$

In the following, we assume that were given

- an expression language Expr for guards, and
- an action language $A c t$ for actions,
and that were given
- a semantics for boolean expressions in form of a partial function

$$
\mathfrak{C U} \cdot \mathbb{D}(\cdot, \cdot): E x p r \times \Sigma_{\mathscr{S}}^{\mathscr{S}} \times \mathscr{D}(\mathscr{C}) \stackrel{6}{\rightarrow} \mathbb{B}
$$

which evaluates expressions in a given system configuration,
Assuming I to be partial is a way to treat "undefined" during runtime. If I is not defined (for instance because of dangling-reference navigation or division-by-zero), we want to go to a designated "error" system configuration.

- a transformer for each action: for each act $\in A c t$, we assume to have

$$
\begin{aligned}
t_{a c t} & \subseteq \mathscr{D}(\mathscr{C}) \times\left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times E t h\right) \times\left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times E t h\right) \\
& \mathbb{R}
\end{aligned}
$$

Transformer

Definition.
Let $\Sigma_{\mathscr{S}}^{\mathscr{D}}$ the set of system configurations over some $\mathscr{S}_{0}, \mathscr{D}_{0}$, Eth.
We call a relation

$$
t \subseteq\left(\mathscr{D}(\mathscr{C}) \times\left(\Sigma_{\mathscr{S}}^{\mathscr{D}} \times E t h\right)\right) \times\left(\Sigma_{\mathscr{\mathscr { S }}}^{\mathscr{\mathscr { C }}} \times \text { Eth }\right)
$$

a (system configuration) transformer.

Example

- $t\left[u_{x}\right](\sigma, \varepsilon) \subseteq \Sigma_{\mathscr{S}}^{\mathscr{S}} \times E t h$ is
- the set (!) of the system configurations
- which may result from object u_{x}
- executing transformer t.

```
- \(t_{\text {skip }}\left[u_{x}\right](\sigma, \varepsilon)=\{(\sigma, \varepsilon)\}\)
- \(t_{\text {create }}\left[u_{x}\right](\sigma, \varepsilon)\) : add a previously non-alive object to \(\sigma\) (id. non-det, chosen)
```


Observations

- In the following, we assume that
- each application of a transformer t
- to some system configuration (σ, ε)
- for object u_{x}
is associated with a set of observations

$$
\mathrm{Obs}_{t}\left[u_{x}\right](\sigma, \varepsilon) \in 2^{(\mathscr{D}(\mathscr{E}) \dot{\cup}\{*,+\}) \times \mathscr{D}(\mathscr{C})} .
$$

- An observation

$$
\left(u_{e}, u_{d s t}\right) \in O b s_{t}\left[u_{x}\right](\sigma, \varepsilon)
$$

represents the information that,
as a "side effect" of object u_{x} executing t in system configuration (σ, ε),
the event u_{e} has been sent to $u_{d s t}$.
Special cases: creation ('*') / destruction ('+').

A Simple Action Language

In the following we use

```
Act \(_{\mathscr{S}}=\{\) skip \(\}\)
\(\cup\left\{\right.\) update \(\left.\left(\operatorname{expr}_{1}, v, \operatorname{expr}_{2}\right) \mid \operatorname{expr}_{1}, \operatorname{expr}_{2} \in E x p r_{\mathscr{S}}, v \in \operatorname{atr}\right\}\)
\(\cup\left\{\operatorname{send}\left(E\left(\operatorname{expr}_{1}, \ldots, \operatorname{expr}_{n}\right), \operatorname{expr}_{d s t}\right) \mid \operatorname{expr}_{i}, \operatorname{expr}_{d s t} \in \operatorname{Expr}_{\mathscr{L}}, E \in \mathscr{E}\right\}\)
\(\cup\left\{\right.\) create \((C\), expr,\(\left.v) \mid C \in \mathscr{C}, \operatorname{expr} \in \operatorname{Expr}_{\mathscr{L}}, v \in V\right\}\)
\(\cup\left\{\right.\) destroy \((\) expr \() \mid\) expr \(\in\) Expr \(\left._{\mathscr{S}}\right\}\)
```

and OCL expressions over \mathscr{S} (with partial interpretation) as $\operatorname{Expr}_{\mathscr{S}}$.

abstract syntax skip	concrete syntax skip	
intuitive semantics	do nothing	
well-typedness	.$/$.	
semantics	$t_{\text {skip }}\left[u_{x}\right](\sigma, \varepsilon)=\{(\sigma, \varepsilon)\}$	
observables	$O b s_{\text {skip }}\left[u_{x}\right](\sigma, \varepsilon)=\emptyset$	
(error) conditions		

Transformer: Update

Update Transformer Example
$\mathcal{S M}_{C}:$

$t_{\text {update }\left(\operatorname{expr}_{1}, v, \operatorname{expr}_{2}\right)}\left[u_{x}\right](\sigma, \varepsilon)=(\sigma^{\prime}=\sigma[u \mapsto \sigma(u)[v \mapsto \underbrace{\left.\llbracket \operatorname{expr}_{2} \rrbracket\left(\sigma, u_{x}\right)\right]}], \varepsilon), u=I \llbracket \operatorname{expr}_{1} \rrbracket\left(\sigma, u_{x}\right)$

Transformer: Send

```
abstract syntax
concrete syntax
    send}(E(\mp@subsup{\operatorname{expr}}{1}{},\ldots,\mp@subsup{\operatorname{expr}}{n}{}),\mp@subsup{\operatorname{expr}}{dst}{}
intuitive semantics
Object }\mp@subsup{u}{x}{}:C\mathrm{ sends event E to object expr dst, i.e. create a fresh signal
        instance, fill in its attributes, and place it in the ether.
well-typedness
        E\in\mathscr{E};\operatorname{atr}(E)={\mp@subsup{v}{1}{}:\mp@subsup{T}{1}{},\ldots,\mp@subsup{v}{n}{}:\mp@subsup{T}{n}{}};\mp@subsup{\operatorname{expr}}{i}{}:\mp@subsup{T}{i}{},1\leqi\leqn;
        expr}dst:\mp@subsup{T}{D}{},C,D\in\mathscr{C}\\mathscr{E}
        all expressions obey visibility and navigability in C
semantics
            (\sigma
    if }\mp@subsup{\sigma}{}{\prime}=\sigma\dot{\cup}{u\mapsto{\mp@subsup{v}{i}{}\mapsto\mp@subsup{d}{i}{}|1\leqi\leqn}};\quad\mp@subsup{\varepsilon}{}{\prime}=\varepsilon\oplus(\mp@subsup{u}{dst}{},u)
    if }\mp@subsup{u}{dst}{}=I\llbracket\mp@subsup{exppr dst }{ \(\sigma,\mp@subsup{u}{x}{})\in\operatorname{dom}(\sigma);\quad\mp@subsup{d}{i}{}=I\llbracket\mp@subsup{expr}{i}{i}\rrbracket(\sigma,\mp@subsup{u}{x}{})\mathrm{ for}}{
                    1\leqi\leqn;
            u\in\mathscr{D}(E) a fresh identity, i.e. }u\not\in\operatorname{dom}(\sigma)
            and where ( }\mp@subsup{\sigma}{}{\prime},\mp@subsup{\varepsilon}{}{\prime})=(\sigma,\varepsilon) \mathrm{ if }\mp@subsup{u}{dst}{}\not\in\operatorname{dom}(\sigma)
observables
                                    Obs}\mp@subsup{s}{\mathrm{ send}}{}[\mp@subsup{u}{x}{}]={(\mp@subsup{u}{e}{},\mp@subsup{u}{dst}{})
(error) conditions
    I\llbracketexpr\rrbracket(\sigma,\mp@subsup{u}{x}{})\mathrm{ not defined for any expr }\in{\mp@subsup{\operatorname{expr}}{dst}{},\mp@subsup{\operatorname{expr}}{1}{},\ldots,\mp@subsup{expr}{n}{}}
```

Send Transformer Example
$\mathcal{S} \mathcal{M}_{C}:$

$t_{\text {send }\left(\operatorname{expr}_{s r c}, E\left(\operatorname{expr}_{1}, \ldots, \text { expr }_{n}\right), \operatorname{expr}_{d s t}\right)}\left[u_{x} \rrbracket(\sigma, \varepsilon) \ni\left(\sigma^{\prime}, \varepsilon^{\prime}\right)\right.$ iff $\varepsilon^{\prime}=\varepsilon \oplus\left(u_{d s t}, u\right) ;$
$\sigma^{\prime}=\sigma \dot{\cup}\left\{u \mapsto\left\{v_{i} \mapsto d_{i} \mid 1 \leq i \leq n\right\}\right\} ; u_{d s t}=I \llbracket \operatorname{expr}_{d s t} \rrbracket\left(\sigma, u_{x}\right) \in \operatorname{dom}(\sigma) ;$
$d_{i}=I \llbracket \operatorname{expr}_{i} \rrbracket\left(\sigma, u_{x}\right), 1 \leq i \leq n ; u \in \mathscr{D}(E)$ a fresh identity;

$\sigma:$| $\underline{u_{1}: C}$ |
| :--- |
| $x=5$ |

$\varepsilon:$

29/34

Sequential Composition of Transformers

- Sequential composition $t_{1} \circ t_{2}$ of transformers t_{1} and t_{2} is canonically defined as

$$
\left(t_{2} \circ t_{1}\right)\left[u_{x}\right](\sigma, \varepsilon)=t_{2}\left[u_{x}\right]\left(t_{1}\left[u_{x}\right](\sigma, \varepsilon)\right)
$$

with observation

$$
O b s_{\left(t_{2} \circ t_{1}\right)}\left[u_{x}\right](\sigma, \varepsilon)=O b s_{t_{1}}\left[u_{x}\right](\sigma, \varepsilon) \cup O b s_{t_{2}}\left[u_{x}\right]\left(t_{1}(\sigma, \varepsilon)\right) .
$$

- Clear: not defined if one the two intermediate "micro steps" is not defined.

Transformers And Denotational Semantics

Observation: our transformers are in principle the denotational semantics of the actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

- empty statements, skips,
- assignments,
- conditionals (by normalisation and auxiliary variables),
- create/destroy (later),
but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.
Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into transition cycles in the state machine.

Tell Them What You've Told Them. . .

- A ether is an abstract representation of different possible "event pools" like
- FIFO queues (shared, or per sender),
- One-place buffers,
- ...
- A system configuration consists of
- an event pool (pending messages),
- a system state over a signature with implicit attributes for
- current state,
- stability,
- etc.
- Transitions are labelled with actions, the effect of actions is explained by transformers, transformers may modify system state and ether.

References

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

[^0]: Our ether $(\rightarrow$ in a minute) is a general representation of many possible choices.

