Software Design, Modelling and Analysis in UML

Lecture 11: Core State Machines I

2016-12-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitét Freiburg, Germany

15.3.12 StateMachine (omG, 2011b, 574)

« Event occurrences are detected, di

The same conditions apply after the run-

patched, and th the stat
machine, one at a time.

« The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing,

‘that an event [-] can only be taken from
the pool and dispatched if the processing
of the previous [Tis fully completed

« The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

« Before commencing on a run-to-
completion_step, a state machine is
in dGtable statexonfiguration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

pletion step is completed
Thus. an event occurrence will never be

processed[..] insome ntermediate andin-
consistent situation.

[IOW.] The run-to-co:

passage befween two stptg configurations
of the state machine

The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

The order of dequeting is not defined,
leaving open the possibility of modeling
different priority-based schemes.

Run-to-completion may be implemented
in various ways. [

28/

Content

« Recall: Basic Causality Model
« Event Pool
71. insert, remove, clear, ready.

* System Configuration

|t implicit attributes:
stable, st, and friends.
L system state plus event pool

o Actions
v!. simple action language.
‘e transformer: effects of actions.

Example

SM:

292

Roadmap: Chronologically

Syntax:
(i) UML State Machine Diagrams.~
Def: Signature with signals. e
Def: Core state machine.
(iv) Map UML State Machine uw«bam

o core state machines,
Semantics: ,\
The Basic Causality Model

Def.: Ether (aka. event pool)
Def.: System configuration.
Def.: Event.

Def.: Transformer.
Def: Transition system, computation.
Tran:
chine.

4

e

[

(xi) Def: step, run-to-completion step.

(xii) Later: Hierarchical state machines.

tion relation induced by core state ma-

Recall: 15.3.12 StateMachine (ov

« The order of dequeuing is not defined,
leaving open the possibility of modeling
different|priority- cmmmavwnrm_‘:mm

dgfnater,

Example: FIFO Queue
A (single, global, shared, reliable) FIFO queue is an ether:
o Bih =(D(E) x DE))* e

the set of Jh,i_f spuences of s
o ready : Bth x 9(€) — 27

ﬁm\;L Lad y | otaene
o @: Bth x 2(€) x 9(&) - Eth

(ewe) > e (ue)
« &1 Eth x 9(&) - Eth

g, f e=luehy, wede)

(ee)ims M«w ofhensise

'

o []: Bth x 2(€) — Eth Ll ew):
A5 fom Hhe gl £, ecDle)

remove all (we)

{le)], £ c= (el

Ether and OMG (2011b) AS.WE

The standard distinguishes (among others)

« SignalEvent (OMG, 2011b, 450) and Reception (OMG, 2011b, 447).

On SignalEvents, it says
A signal event represents the receipt of an asynchronous signal instance.
Asignal event may, for example, cause a state machine fo trigger a transition. (OMG,
2011b, 449)[..]
Semantic Variation Points
The means by which requests are transported to their target depend on the type of
requesting action, the target, the properties of the communication medium, and
numerous other factors.
In some cases, this is instantaneous and completely reliable while in others it may
involve transmission delays of variable duration, loss of requests, reordering, or
duplication.
(See also the discussion on page 421) (OMG, 2011b, 450)

© Ourether (ina minute) is a general representation of many possible choices

Often seen minimal requirement: order of sending by one object s preserved.

s34 8/34

Other Examples

= One FIFO queue per active object is an ether.
ch = DCE) — (Dee)=e))*
» One-place buffer.
= e O (DE<DC)
 Priority queue.
© Multi-queues (one per sender).
o Trivial example: sink, “black hole"

© Lossy queue (& needs to become a relation then).

10734 s 734

Ether aka. Event Pool

Definition. Let . = (.7, %, V, atr, &) be a signature with signals and 7 a

structure.
We call a tuple (Eth, ready, ®, ©,[-]) an ether over . and 2 ;amm:n_ only
provides ISR Gl TS
ok ;)@M m«
o aready ovmﬁ:o: wi 3 |ds a set of events (i.e., i :m::m»w:nmmv ﬁrw»
are ready for a given object, i

ready : Eth x 9(%, 28
© aoperation to insert an event for w.m_<m: bject, i.e.
@ : Bth x .@73 x P(&) — Eth

a operation to remove an event, i.e.

&1 Eth x () — Eth
an operation to clear the ether for Lmﬁm?m: object,

[-]: Eth x @%\v — Eth.

System Configuration

System Configuration

ion. Let #y = (7, 6o, Vb, atro, &) be a signature with signals, 7, a structure of
S0, (Bth, ready, ®,©, [-]) an ether over ., and Z.
Furthermore assume there is one core state machine M per class C' € €.

7L el &T tes
DCBl) = F02]

ol OO

where :w diss il sl

A system configuration over %, Zo, and Eth is a pair

o S =(%HU{Sy. | Ce%}, %, of Ma
Vi U {(stable : Bool, —, true, 0)}
U {(stc : Sme,+,50,0) | C € €}
U {(paramsy; : Bos,+,0,0) | E € 6o}, v ok
{C o atro(C) \ ‘

U {stable, stc} U {paramsy, | E € &} | C € €Y, &)

4 * 2 =P U{Sue — S(Mc) | C € €}, and
o o(u)(r) N Z(&) = O for each u € dom (o) and r € Vi

13/34

Stability

Definition.
Let (, =) be a system configuration over some .%, %, Eth.

We call an object u € dom(c) N Z(%;) stable in o if and only if

o st ol o(u)(stable) = rud. 1
wns anit,

5 16734

System Configuration: Example

C Fo = (Fo, o, Vo, atro, &)
z:Int o F=(% U {5 | C e},
Vo U {{stable : Bool, —, true,)} U {
O {{paramsy; : Eo
{C v+ atro(C) U {stable, stc} U {params | E € &} | C €€}, &)
 Z =% 0 {Sx. — S(Mc) | C € €).and
1) N (6) = b for ea)andr € V,

(9,2) € 2% x Eth where

50, 0) | C €6}

Epibe

S T,w&dﬂ
Do) § il m\&

14734

Where are we? _.|€h@ ,.=_ o

I
nlF

SMc:

/=0

4
\:M\ua ©,0) {rFho)

(02,22) (03,€3)
\ 1

ur uz

< 17134

System Configuration Step-by-Step

« We start with some signature with signals . = (%, %0, Vo, atro, &).

« Asystem configuration is a pair (o, £) which
comprises a system state o wrt. . (not wrt. .%p).

© Such a system state o wrt.." provides, for each object u € dom(o),

values for the explicit attributes in Vp,
attributes, namely

« values for a number of impli

y flag, ie. o'(u)(stable) is a boolean value,

© acurrent (state machine) state, i.e. o(u)(st) denotes one of the states of core state
machine Mc,

= atemporary association to access event parameters for each class, ie. o (u) (params)
is defined for each £ € .

« For convenience require: there is no link to an event except for params .

15/34

Transformer

< 18/34

Recall

» The (simplified) syntax of transition annotations:

annot = [(event) [(guard)] [/ (action)]]

o Clear: (event) is from & of the corresponding signature.
» But: What are (guard) and (action)?
« UML can be viewed as being parameterized in expression language
(providing (guard)) and action language (providing (action)).
* Examples:
o Expression Language:
ocL
o Java, C++, ...expressions
.

® Action Language:
© UML Action Semantics, “Executable UML"
® Java, C++, ..statements (plus some event send action)
.

-+

Observations

o In the following, we assume that
« each application of a transformer ¢
* to some system configuration (o,)
o for object u,

is associated with a set of observations

Obsy[u,](0,¢) € 228 U Lot x2(€)

An observation

(tte, tast) € Obsy[uz](0,2)
represents the information that,
as a “side effect” of object u, executing
the event u. has been sent to ;.

system configuration (o, &

Special cases: creation (') / destruction ('+).

19734

2234

Needed: Semantics oL
= epllu) =
In the following, we assume that were given 1, i T Lord(s
fafad)=7
 an expression language Eapr for guards, and , i T Cepe] (s,
© an action language Act for actions, itnuf)=0
el otornisc

and that we're given

« asemantics for boolean expressions in form of a partial function

%

nié. -): Bapr x 8% x 2(¢) + B

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not defined (for
instance because of dangling-reference navigation or division-by-zero), we want to go to a
designated ‘error’ system configuration.

« atransformer for each action: for each act € Act, we assume to have
tuce € 2(%) x (2% x Eth) x (2% x Eth)
S
o
20734

A Simple Action Language

In the following we use

Acty = {skip}
U {update(expr,, v, expry) | expr,, expry € Expr,,v € atr}
U {send(E(eapr, ..., eapr,,), eapr oy,) | €xpry, expr gy, € Bapr o, B € £}
U {create(C, expr,v) | C € €, expr € Ezpr ,,v eV}

U {destroy(expr) | ezpr € Ezpr ,}

and OCL expressions over . (with partial interpretation) as Ezpr ..

23/34

Transformer

Definition.
Let MW the set of system configurations over some ., %, Eth.

We call a relation
' m@g X (5% x Bih)x (% x Eth)
a(system configuration) transformer.
Example:

o tlu,)(0,€) C 8% x Bthis

« the set () of the system configur

» which may result from object u..
« executing transformer t.

e taaplw](o6) = {(o,6)}
o fereatetts] (0, 2) : add a previously non-alive object to o (. nan-dets <lose.)

23
Transformer Examples: Presentation
abstract syntax concrete syntax
op
ituitive semantics
7 well-typedness
semantics
((0,€), (0",€")) € toplug] iff ... fostoriss
or G
topluz)(0,€) = {(0’,) | where...}
observables
Obsoplus] = {...}
(error) conditions
Not defined if ...
: 24734

Transformer: Skip

abstract syntax concrete syntax
skip skip
intuitive semantics
do nothing
well-typedness
A
semantics
towiplua (e, €) = {(0,€)}
observables
Obssusplus](0.) =
(error) conditions

Transformer: Send

abstract syntax concrete syntax
send(E(expr;
intuitive semar
Object u, : C sends event E to object cxpr .,
instance, fill in its attributes, and place
well-typedness
E€&atr(E)={v : Th,...
eapr gy Tp. C,D € 6\ &;

create a fresh signal
the ether.

apry T 1<i<m

all expressions obey visibility and navigability in C'
semantics
(0,€) € taana(B(eapr,.....capr,) ezpr) () (0, €)
o' =0 U {urs o> di [1<i < n}h & = €@ (g u)s

i = Ieaprg](ous) € dom(o): di = Ifeapr;](e us) for
1<i<m

u € 2(B) afresh identity, ie. u & dom(a),

and where (a',=') = (0,) f g & dom(o).

observables
Obs sand waat)}
(error) conditions
I[eapr] (e, u,) not defined for any eapr € {expr g, eapry, - ., capr,}

25/34

28/34

Transformer: Update

g

(fy = wfx047)

abstract syntax concrete syntax
update(ezpr, v, expry) expry Y = P

intuitive semantics
Update attribute v in the object denoted by expr to the value
denoted by expry.

well-typedness

1T € atr(C); expry: T;

semantics) et clee

1,

dramge s _._a.z;,s:es&ﬁa_?mv\nﬁﬁ%\\%ﬁé Lo
Wbt T e ol

et where o’ = ofu — o(u)[v — ~T§~|’\J§\é
u = I[expry] (o, uz) &ﬂ»? 70 Y a\&
observables
=0

Obsupaate(eapr)|
ions

if I[expr, (o, u.) or Iexpry] (o, u.) not defined.

(error) con
Not define

Send Transformer Example

SMe: InVF(z +1)

uz)(0,€) 3 (o, ') ff & = & & (waer, w):

taena(capr,, . E(capr
o' =0 0 {urs {vi = di | 1< i < n}}iwag = Ieapraq] (0, uz) € dom(o):
di = Ifeapr;](o,uz), 1 < i < n;u € (E) afresh identity;

26/34

29734

Update Transformer Example

SMc: 1) Jzi=x+1 (52
(1) .m@(x\ = x 4a (2]
op vt oFie b

= Ieapry](o, ue)] €). u = Ieapr](o, uz)

=ofuo
e

. ;nHm,Lﬁ}E?\ w)

w:C =T, Cofd (s, fal 1)) w:C|
y= y=
s o BL 0113 (5 u,) -0
== =T Cofox 1] (s $ofired |
& 5 €=

e~
ot B0,

27734

Sequential Composition of Transformers

| composition #; o ¢; of transformers ¢, and ¢, is canonically defined as

(t1[uz](o,€))

(t2 o t0)fus](0,2) = tals

with observation

5 30734

Transformers And Denotational Semantics

Observation: our transformers are in principle the denotational semantics of the
actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

« empty statements, skips,

. nals (by normalisation and auxiliary variables),
« create/destroy (later),

but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
ion cycles in the state machine.

References

OMG (2011a). Uni
formal/2011-08-05.

d modeling language: Infrastructure, version 2.4.1. Technical Report

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

3134

3434

Tell Them What You've Told Them. ..

» A ether is an abstract representation of different possible
“event pools” like
= FIFO queues (shared, or per sender),
« One-place buffers,

A system configuration consists of
= anevent pool (pending messages).
» asystem state over a signature with

implicit attributes for

o current state,

® stability,

Transitions are labelled with actions, the effect
of actions is explained by transformers,
transformers may modify system state and ether.

3234

References

3334

