Software Design, Modelling and Analysis in UML Lecture 13: Core State Machines III

2016-12-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- 13 - 2016-12-15 - main

- Recall: Transitions of UML State Machines
- • discard event,
- dispatch event,
- →• continue RTC,
- environment interaction,
- error condition.
- Example Revisited
- Initial States
- Rhapsody Demo III: Model Animation
- Create and Destroy Transformers

Recall: Transition Relation

- 13 - 2016-12-15 - Sstmrtcrules

From Core State Machines to LTS

Definition. Let $\mathscr{S}_0 = (\mathscr{T}_0, \mathscr{C}_0, V_0, atr_0, \mathscr{E})$ be a signature with signals (all classes in \mathscr{C}_0 active), \mathscr{D}_0 a structure of \mathscr{S}_0 , and $(Eth, ready, \oplus, \ominus, [\cdot])$ an ether over \mathscr{S}_0 and \mathscr{D}_0 . Assume there is one core state machine M_C per class $C \in \mathscr{C}$. We say, the state machines induce the following labelled transition relation on states $S := (\Sigma_{\mathscr{S}}^{\mathscr{D}} \times Eth) \dot{\cup} \{\#\}$ with labels $A := 2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \dot{\cup} \{*,+\}) \times \mathscr{D}(\mathscr{C})} \times \mathscr{D}(\mathscr{C})$: • $(\sigma, \varepsilon) \xrightarrow{(cons,Snd)}_u (\sigma', \varepsilon')$ if and only if (i) an event with destination u is discarded, (ii) an event is dispatched to u, i.e. stable object processes an event, or (iii) run-to-completion processing by u continues, i.e. object u is not stable and continues to process an event, (iv) the environment interacts with object u, • $s \xrightarrow{(cons, \emptyset)} \#$ if and only if (v) an error condition occurs during consumption of cons, or s = # and $cons = \emptyset$.

$$(\sigma, \varepsilon) \xrightarrow[u]{(cons,Snd)} (\sigma', \varepsilon')$$

if

• an E-event (instance of signal E) is ready in ε for object u of a class \mathscr{C} , i.e. if

$$u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \land \exists u_E \in \mathscr{D}(E) : u_E \in ready(\varepsilon, u)$$

- u is stable and in state machine state s, i.e. $\sigma(u)(stable) = 1$ and $\sigma(u)(st) = s$,
- but there is no corresponding transition enabled (all transitions incident with current state of u either have other triggers or the guard is not satisfied)

$$\forall (s, F, expr, act, s') \in \to (\mathcal{SM}_C) : F \neq E \lor I\llbracket expr \rrbracket(\sigma, u) = 0$$

and

2016-12-15 - Sstmrtd

-13-

- in the system configuration, stability may change, u_E goes away, i.e.

$$\sigma' = \sigma[u.stable \mapsto b] \setminus \{u_E \mapsto \sigma(u_E)\}$$

- where b = 0 if and only if there is a transition with trigger '_' enabled for u in (σ', ε') .
- the event u_E is removed from the ether, i.e.

$$\varepsilon' = \varepsilon \ominus u_E,$$

• consumption of u_E is observed, i.e.

$$cons = \{u_E\}, \quad Snd = \emptyset.$$
 5/39

$$(\sigma,\varepsilon) \xrightarrow[u]{(cons,Snd)} (\sigma',\varepsilon')$$

if

- $u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \land \exists u_E \in \mathscr{D}(E) : u_E \in ready(\varepsilon, u)$
- u is stable and in state machine state s, i.e. $\sigma(u)(stable) = 1$ and $\sigma(u)(st) = s$,
- a transition is **enabled**, i.e.

$$\exists (s, F, expr, act, s') \in \to (\mathcal{SM}_C) : F = E \land I\llbracket expr \rrbracket (\tilde{\sigma}, u) = 1$$

where $\tilde{\sigma} = \sigma[u.params_E \mapsto u_E]$.

and

- 13 - 2016-12-15 - Sstmrtc

• (σ', ε') results from applying t_{act} to (σ, ε) and removing u_E from the ether, i.e.

$$(\sigma'',\varepsilon') \in t_{act}[u](\tilde{\sigma},\varepsilon \ominus u_E),$$

$$\sigma' = (\sigma''[u.st \mapsto s', u.stable \mapsto b, u.params_E \mapsto \emptyset])|_{\mathscr{D}(\mathscr{C}) \setminus \{u_E\}}$$

where b depends (see (i))

• Consumption of u_E and the side effects of the action are observed, i.e.

$$cons = \{u_E\}, \quad Snd = Obs_{t_{act}}[u](\tilde{\sigma}, \varepsilon \ominus u_E).$$

$$(\sigma, \varepsilon) \xrightarrow[u]{(cons,Snd)} (\sigma', \varepsilon')$$

if

• there is an unstable object u of a class \mathscr{C} , i.e.

$$u \in \operatorname{dom}(\sigma) \cap \mathscr{D}(C) \wedge \sigma(u)(stable) = 0$$

and

• there is a transition without trigger enabled from the current state $s = \sigma(u)(st)$, i.e.

,

$$\exists (s, _, expr, act, s') \in \to (\mathcal{SM}_C) : I\llbracket expr \rrbracket(\sigma, u) = 1$$

and

- 13 - 2016-12-15 - Sstmrtcrules

• (σ', ε') results from applying t_{act} to (σ, ε) , i.e.

$$(\sigma'', \varepsilon') \in t_{act}[u](\sigma, \varepsilon), \quad \sigma' = \sigma''[u.st \mapsto s', u.stable \mapsto b]$$

where *b* depends as before.

- Only the side effects of the action are observed, i.e. $cons = \emptyset$, $Snd = Obs_{tact}[u](\sigma, \varepsilon)$.
- $\sigma' = \sigma[u.stable \mapsto 1], \varepsilon' = \varepsilon, cons = \emptyset, Snd = \emptyset$, otherwise.

(iv) Environment Interaction

Assume that a set $\mathscr{E}_{env} \subseteq \mathscr{E}$ is designated as **environment events** and a set of attributes $V_{env} \subseteq V$ is designated as **input attributes**.

Then

$$(\sigma, \varepsilon) \xrightarrow{(cons,Snd)}_{env} (\sigma', \varepsilon')$$

if either (!)

• an environment event $E \in \mathscr{E}_{env}$ is spontaneously sent to an alive object $u \in dom(\sigma)$, i.e.

 $\sigma' = \sigma \cup \{ u_E \mapsto \{ v_i \mapsto d_i \mid 1 \le i \le n \}, \quad \varepsilon' = \varepsilon \oplus (u, u_E)$

where $u_E \notin \operatorname{dom}(\sigma)$ and $atr(E) = \{v_1, \ldots, v_n\}$.

• Sending of the event is observed, i.e. $cons = \emptyset$, $Snd = \{u_E, \}$.

or

• $\varepsilon' = \varepsilon$.

2016-12-15 - Sstmrtc

• Values of input attributes change freely in alive objects, i.e.

$$\forall v \in V \,\forall u \in \operatorname{dom}(\sigma) : \sigma'(u)(v) \neq \sigma(u)(v) \implies v \in V_{env}$$

and no objects appear or disappear, i.e. $dom(\sigma') = dom(\sigma)$.

(v) Error Conditions

$$s \xrightarrow{(cons,Snd)} \#$$

if, in (i), (ii), or (iii),

- I[[expr]] is not defined for σ and u, or
- $t_{act}[u]$ is not defined for (σ, ε) ,

and

• $cons = \emptyset$, and $Snd = \emptyset$.

$$E[x/0]/act \qquad s_2$$

$$E[x/0]/act \qquad s_2$$

$$E[true]/act \qquad s_3$$

•
$$s_1 \xrightarrow{E[expr]/x := x/0} s_2$$

Ех	cample	e Re	visit	ed	not $\partial c/L U$	C nt	(n) p			$\langle\!\langle signal \rangle\!\rangle$ E
							< €		01	$\langle\!\langle signal \rangle\!\rangle$ F
	$\frac{c:C}{z=2}$	SA 3 ;; <u>2;;</u> 5	1 _C :	51 F/ 2D(D)	$E[\underline{n \neq \emptyset}]/x$	= x + 1	; n ! F		F/ $F/$ $F/$ $F/$ $F/$ $F/$ $F/$ $F/$	$:S\mathcal{M}_D$
Shi	ble=1	$1_C: C$				$5_D: D$			(462)	
	Nr.	x	n	st	stable	p	st	stable	ε	rule
	0	27	5_D	s_1	1	1_C	s_1	1	$(3_F, 1_C).(2_E, 1_C)$	
	1	27	5D	۶,	1	16	1 ک	1	(2E,1c)	(;)
	r_1^2	28	55	s2	0	10	51	1	(47,5D)	(ii)
	- 3a	28	ø	53	1	10	3,	1	(47,50)	(;;;)
						ì				
										· · · · ·
1	36	28	5 _D	حد	0	1c	د2	0	ε	(ii)
nrtcrule	(2461	85	ø	53	1	12	S≥	0	É	(íā)
5 - Sstr	L 462	८४	S_D	52	0	70	٨٢	1	$\left(\frac{2\pi}{2\pi}, 1_{c}\right)$	(13.)
016-12-1						ì				
- 13 - 21	•	-		-						

Transition Relation, Computation

- 13 - 2016-12-15 - main

Definition. Let A be a set of labels and S a (not necessarily finite) set of of states. We call $\rightarrow \subseteq S \times A \times S$ a (labelled) transition relation. Let $S_0 \subseteq S$ be a set of initial states. A (finite or infinite) sequence $s_0 \xrightarrow{a_0} s_1 \xrightarrow{[a_1]{a_1}{a_1}} s_2 \xrightarrow{a_2} \dots$ with $s_i \in S$, $a_i \in A$ is called computation $[s_i \neq f_{ing} \neq s_0]$ of the labelled transition system (S, A, \rightarrow, S_0) if and only if [• initiation: $s_0 \in S_0$] • consecution: $(s_i, a_i, s_{i+1}) \in \rightarrow$ for $i \in \mathbb{N}_0$. Step and Run-to-Completion

17/39

Notions of Steps: The Step

Note: we call one evolution

$$(\sigma,\varepsilon) \xrightarrow[u]{(cons,Snd)} (\sigma',\varepsilon')$$

a **step**.

Thus in our setting, a step often¹ directly corresponds to

one object (namely *u*) taking **a single transition** between regular states.

(We will extend the concept of "single transition" for hierarchical state machines.)

 $^{1}:$ In case of dispatch and continue with enabled transition.

That is: We're going for an interleaving semantics without true parallelism.

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps of one object, where the first step is a dispatch step, all later steps are continue steps, and the last step establishes stability (or object disappears).

Note: while one step corresponds to one transition in the state machine, a run-to-completion step is in general not syntacically definable:

one transition may be taken multiple times during an RTC-step.

Example:

19/39

Notions of Steps: The Run-to-Completion Step Cont'd

Proposal: Let

2016-12-15 -- 13 -

$$(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} \dots \xrightarrow{(cons_{n-1}, Snd_{n-1})} (\sigma_n, \varepsilon_n), \quad n > 0$$

be a finite (!), non-empty, maximal, consecutive sequence such that

- $(cons_0, Snd_0)$ indicates dispatching to $u := u_0$ (by Rule (ii)), i.e. $cons = \{u_E\}, u_E \in dom(\sigma_0) \cap \mathscr{D}(\mathscr{E}),$
- if *u* becomes stable or disappears, then in the last step, i.e.

 $\forall i > 0 \bullet (\sigma_i(u)(stable) = 1 \lor u \notin \operatorname{dom}(\sigma_i)) \implies i = n$

Let $0 = k_1 < k_2 < \cdots < k_N < n$ be the maximal sequence of indices such that $u_{k_i} = u$ for $1 \le i \le N$. Then we call the sequence

$$(\sigma_0(u) =) \quad \sigma_{k_1}(u), \sigma_{k_2}(u) \dots, \sigma_{k_N}(u), \sigma_n(u)$$

a (!) run-to-completion step of u (from (local) configuration $\sigma_0(u)$ to $\sigma_n(u)$).

X E/ K

Divergence

We say, object u can diverge on reception $cons_0$ from (local) configuration $\sigma_0(u)$ if and only if there is an infinite, consecutive sequence

$$(\sigma_0, \varepsilon_0) \xrightarrow{(cons_0, Snd_0)} (\sigma_1, \varepsilon_1) \xrightarrow{(cons_1, Snd_1)} \dots$$

where $u_i = u$ for infinitely many $i \in \mathbb{N}_0$ and $\sigma_i(u)(stable) = 0$, i > 0, i.e. u does not become stable again.

21/39

Run-to-Completion Step: Discussion.

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object we still **see** the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be:

the behaviour of a set of objects is determined by the behaviour of each object "in isolation". Our semantics and notion of RTC-step doesn't have this (often desired) property.

- 13 - 2016-12-15 - Sstmstep -

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be:

the behaviour of a set of objects is determined by the behaviour of each object "in isolation". Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an interleaving of local ones?

22/39

Run-to-Completion Step: Discussion.

Our definition of RTC-step takes a global and non-compositional view, that is:

- In the projection onto a single object we still see the effect of interaction with other objects.
- Adding classes (or even objects) may change the divergence behaviour of existing ones.
- Compositional would be:

the behaviour of a set of objects is determined by the behaviour of each object "in isolation". Our semantics and notion of RTC-step doesn't have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an interleaving of local ones?

Maybe: Strict interfaces.

- (A): Refer to private features only via "self".
 (Recall that other objects of the same class can modify private attributes.)
- (B): Let objects only communicate by events, i.e. don't let them modify each other's local state via links at all.

(Proof left as exercise...)

2016-12-15 - Sstmstep

Putting It All Together

23/39

Initial States

Recall: a labelled transition system is (S, A, \rightarrow, S_0) . We have

- S: system configurations (σ, ε)
- \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow[u]{(cons,Snd)} u (\sigma', \varepsilon')$.

Wanted: initial states S_0 .

Initial States

Recall: a labelled transition system is (S, A, \rightarrow, S_0) . We have

- S: system configurations (σ, ε)
- \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow{(cons, Snd)} (\sigma', \varepsilon')$.

Wanted: initial states S_0 .

Proposal:

Require a (finite) set of **object diagrams** $\mathscr{O}\mathscr{D}$ as part of a UML model

 $(\mathcal{CD}, \mathcal{SM}, \mathcal{OD}).$

And set

- 13 - 2016-12-15 - Stogether

$$S_0 = \{(\sigma, \varepsilon) \mid \sigma \in G^{-1}(\mathcal{OD}), \quad \mathcal{OD} \in \mathscr{OD}, \quad \varepsilon \text{ empty} \}.$$

24/39

Initial States

Recall: a labelled transition system is (S, A, \rightarrow, S_0) . We have

- S: system configurations (σ, ε)
- \rightarrow : labelled transition relation $(\sigma, \varepsilon) \xrightarrow{(cons,Snd)} (\sigma', \varepsilon')$.

Wanted: initial states S_0 .

Proposal:

Require a (finite) set of **object diagrams** \mathscr{OD} as part of a UML model

(CD, SM, OD).

And set

$$S_0 = \{ (\sigma, \varepsilon) \mid \sigma \in G^{-1}(\mathcal{OD}), \quad \mathcal{OD} \in \mathscr{OD}, \quad \varepsilon \text{ empty} \}.$$

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code). We can read that as an abbreviation for an object diagram.

The semantics of the UML model

$$\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$$

where

-13 - 2016-12-15 - Stogether

- some classes in *CD* are stereotyped as 'signal' (standard), some signals and attributes are stereotyped as 'external' (non-standard),
- there is a 1-to-1 relation between classes and state machines,
- \mathscr{OD} is a set of object diagrams over \mathscr{CD} ,

is the transition system (S, A, \rightarrow, S_0) constructed on the previous slide(s).

The computations of \mathcal{M} are the computations of (S, A, \rightarrow, S_0) .

25/39

OCL Constraints and Behaviour

- Let $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$ be a UML model.
- We call \mathcal{M} consistent iff, for each OCL constraint $expr \in Inv(\mathscr{CD})$,

 $\sigma \models expr$ for each "reasonable point" (σ, ε) of computations of \mathcal{M} .

(Cf. tutorial for discussion of "reasonable point".)

Note: we could define $Inv(\mathscr{GM})$ similar to $Inv(\mathscr{CD})$.

OCL Constraints and Behaviour

- Let $\mathcal{M} = (\mathscr{CD}, \mathscr{SM}, \mathscr{OD})$ be a UML model.
- We call \mathcal{M} consistent iff, for each OCL constraint $expr \in Inv(\mathscr{CD})$,
 - $\sigma \models expr$ for each "reasonable point" (σ, ε) of computations of \mathcal{M} .

(Cf. tutorial for discussion of "reasonable point".)

Note: we could define $Inv(\mathscr{SM})$ similar to $Inv(\mathscr{CD})$.

Pragmatics:

- In UML-as-blueprint mode, if *M* doesn't exist yet, then providing *M* = (*CD*, Ø, *OD*) is typically asking the developer to provide state machines *M* such that *M*' = (*CD*, *M*, *OD*) is consistent. If the developer makes a mistake, then *M*' is inconsistent.
- Not so common (but existing):

If $\mathscr{S\!M}$ is given, then constraints are also considered when choosing transitions in the RTC-algorithm.

In other words: even in presence of "mistakes", the state machines in \mathscr{SM} never move to inconsistent configurations.

26/39

Rhapsody Demo III: Model Animation

- State Machines induce a labelled transition system.
- There are five kinds of transitions in the LTS:
 - discard, dispatch, continue, environment, error.
- For now, we assume that all classes are active, thus steps of objects may interleave.
- We distinguish steps and run-to-completion step.
- Initial states can be characterised using object diagrams.
- Missing transformers:
 - **Create**: re-use identities vs. use fresh ones.
 - > next time • Destroy: allow dangling references vs. clean up.

37/39

References

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.