
–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

Software Design, Modelling and Analysis in UML

Lecture 13: Core State Machines III

2016-12-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
13

–
2

0
16

-1
2

-1
5

–
S

co
n

te
n

t
–

2/39

• Recall: Transitions of UML State Machines

• discard event,

• dispatch event,

• continue RTC,

• environment interaction,

• error condition.

• Example Revisited

• Initial States

• Rhapsody Demo III: Model Animation

• Create and Destroy Transformers

Recall: Transition Relation

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

3/39

From Core State Machines to LTS

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

4/39

Definition. Let S0 = (T0,C0, V0, atr0, E) be a signature with signals (all classes in C0

active), D0 a structure of S0, and (Eth, ready,⊕,⊖, [·]) an ether over S0 and D0.
Assume there is one core state machine MC per class C ∈ C .

We say, the state machines induce the following labelled transition relation on states
S := (ΣD

S
× Eth) ∪̇ {#} with labels A := 2D(E) × 2(D(E) ∪̇ {∗,+})×D(C) × D(C):

• (σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if and only if

(i) an event with destination u is discarded,

(ii) an event is dispatched to u, i.e. stable object processes an event, or

(iii) run-to-completion processing by u continues,
i.e. object u is not stable and continues to process an event,

(iv) the environment interacts with object u,

• s
(cons,∅)
−−−−−→ #

if and only if

(v) an error condition occurs during consumption of cons , or
s = # and cons = ∅.

(i) Discarding An Event

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

5/39

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if

• an E-event (instance of signal E) is ready in ε for object u of a class C , i.e. if

u ∈ dom(σ) ∩ D(C) ∧ ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• but there is no corresponding transition enabled (all transitions incident with current state of
u either have other triggers or the guard is not satisfied)

∀ (s, F, expr , act , s′) ∈→ (SMC) : F 6= E ∨ IJexprK(σ, u) = 0

and

• in the system configuration, stability may change, uE goes away, i.e.

σ′ = σ[u.stable 7→ b] \ {uE 7→ σ(uE)}

where b = 0 if and only if there is a transition with trigger ‘_’ enabled for u in (σ′, ε′).

• the event uE is removed from the ether, i.e.

ε′ = ε⊖ uE ,

• consumption of uE is observed, i.e.

cons = {uE}, Snd = ∅.

Example: Discard

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

6/39

SMC :
s1 s2

G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 1, z = 0, y = 2
st = s1

stable = 1

n

ε:
(c, uJ : J),

(c, uG : G)

c : C

x = , z = , y =
st =

stable =

:σ′

: ε′

• u ∈ dom(σ) ∩ D(C)
uE ∈ D(E), uE ∈ ready(ε, u)

• ∀ (s, F, expr , act , s′) ∈→ (SMC) :
F 6= E ∨ IJexprK(σ, u) = 0

• σ(u)(stable) = 1, σ(u)(st) = s,

• σ′ = σ[u.stable 7→ b] \ {uE 7→ σ(uE)}

• ε′ = ε⊖ uE

• cons = {uE}, Snd = ∅

(ii) Dispatch

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

7/39

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if

• u ∈ dom(σ) ∩ D(C) ∧ ∃uE ∈ D(E) : uE ∈ ready(ε, u)

• u is stable and in state machine state s, i.e. σ(u)(stable) = 1 and σ(u)(st) = s,

• a transition is enabled, i.e.

∃ (s, F, expr , act , s′) ∈→ (SMC) : F = E ∧ IJexprK(σ̃, u) = 1

where σ̃ = σ[u.paramsE 7→ uE].

and

• (σ′, ε′) results from applying tact to (σ, ε) and removing uE from the ether, i.e.

(σ′′, ε′) ∈ tact [u](σ̃, ε⊖ uE),

σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.paramsE 7→ ∅])|D(C)\{uE}

where b depends (see (i))

• Consumption of uE and the side effects of the action are observed, i.e.

cons = {uE}, Snd = Obstact [u](σ̃, ε⊖ uE).

Example: Dispatch

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

8/39

SMC :
s1 s2

G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 1, z = 0, y = 2
st = s1

stable = 1

n

ε:
(c, uG : G)

c : C

x = , z = , y =
st =

stable =

:σ′

: ε′

• u ∈ dom(σ) ∩ D(C)
uE ∈ D(E), uE ∈ ready(ε, u)

• ∃ (s, F, expr , act , s′) ∈→ (SMC) :
F = E ∧ IJexprK(σ̃, u) = 1

• σ̃ = σ[u.paramsE 7→ uE].

• σ(u)(stable) = 1, σ(u)(st) = s,

• (σ′′, ε′) = tact (σ̃, ε⊖ uE)

• σ′ = (σ′′[u.st 7→ s′, u.stable 7→ b, u.paramsE 7→ ∅])|D(C)\{uE}

• cons = {uE}, Snd = Obstact [u](σ̃, ε⊖ uE)

(iii) Continue Run-to-Completion

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

9/39

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

if

• there is an unstable object u of a class C , i.e.

u ∈ dom(σ) ∩ D(C) ∧ σ(u)(stable) = 0

and

• there is a transition without trigger enabled from the current state s = σ(u)(st), i.e.

∃ (s, _ , expr , act , s′) ∈→ (SMC) : IJexprK(σ, u) = 1

and

• (σ′, ε′) results from applying tact to (σ, ε), i.e.

(σ′′, ε′) ∈ tact [u](σ, ε), σ′ = σ′′[u.st 7→ s′, u.stable 7→ b]

where b depends as before.

• Only the side effects of the action are observed, i.e. cons = ∅, Snd = Obstact [u](σ, ε).

• σ′ = σ[u.stable 7→ 1], ε′ = ε, cons = ∅, Snd = ∅, otherwise.

Example: Continue

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

10/39

SMC :
s1 s2

G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 2, z = 0, y = 2
st = s2

stable = 0

n

ε:

c : C

x = , z = , y =
st =

stable =

:σ′

: ε′

• u ∈ dom(σ) ∩ D(C), σ(u)(stable) = 0

• ∃ (s,_, expr , act , s′) ∈→ (SMC) :
IJexprK(σ, u) = 1

• σ(u)(st) = s,

• (σ′′, ε′) = tact (σ, ε),

• σ′ = σ′′[u.st 7→ s′, u.stable 7→ b]

• cons = ∅, Snd = Obstact (σ, ε)

(iv) Environment Interaction

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

11/39

Assume that a set Eenv ⊆ E is designated as environment events and a set of
attributes Venv ⊆ V is designated as input attributes.

Then

(σ, ε)
(cons,Snd)
−−−−−−−→

env
(σ′, ε′)

if either (!)

• an environment event E ∈ Eenv is spontaneously sent to an alive object u ∈ dom(σ), i.e.

σ′ = σ ∪̇ {uE 7→ {vi 7→ di | 1 ≤ i ≤ n}, ε′ = ε⊕ (u, uE)

where uE /∈ dom(σ) and atr(E) = {v1, . . . , vn}.

• Sending of the event is observed, i.e. cons = ∅, Snd = {uE ,)}.

or

• Values of input attributes change freely in alive objects, i.e.

∀ v ∈ V ∀u ∈ dom(σ) : σ′(u)(v) 6= σ(u)(v) =⇒ v ∈ Venv .

and no objects appear or disappear, i.e. dom(σ′) = dom(σ).

• ε′ = ε.

Example: Environment

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

12/39

SMC :
s1 s2

G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 0, z = 0, y = 2
st = s2

stable = 1

n

ε:

c : C

x = , z = , y =
st =

stable =

:σ′

: ε′

• σ′ = σ ∪̇ {uE 7→ {vi 7→ di | 1 ≤ i ≤ n}

• ε′ = ε⊕ uE where uE /∈ dom(σ)
and atr(E) = {v1, . . . , vn}.

• u ∈ dom(σ)

• cons = ∅, Snd = {(env , E(~d))}.

(v) Error Conditions

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

13/39

s
(cons,Snd)
−−−−−−−→

u
#

if, in (i), (ii), or (iii),

• IJexprK is not defined for σ and u, or

• tact [u] is not defined for (σ, ε),

and

• cons = ∅, and Snd = ∅.

Examples:

•

s2
s1

s3

E[x/0]/ac
t

E[true]/act

• s1 s2
E[expr]/x := x/0

Example: Error Condition

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

14/39

SMC :
s1 s2

G[x > 0]/x := y

[x > 0]/x := x− 1;n ! J

H/z := y/x

〈〈signal , env〉〉

H

〈〈signal〉〉

G, J

C
x, z : Int
y : Int 〈〈env〉〉

n

0, 1

σ: c : C

x = 0, z = 0, y = 27
st = s2

stable = 1

n

ε:

(c, uH : H)

• IJexprK not defined for σ and u, or

• tact [u] is not defined for (σ, ε)

• cons = ∅,

• Snd = ∅

Example Revisited

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

rt
cr

u
le

s
–

15/39

C
x : Int D

s1 s2

s3

•
E[n 6= ∅]/x := x+ 1;n !F

/n := ∅F/x := 0

SMC :

s1 s2

• F/

/p !F

:SMD

n

0..1p

0..1

〈〈signal〉〉

E

〈〈signal〉〉

F

1C : C 5D : D

Nr. x n st stable p st stable ε rule

0 27 5D s1 1 1C s1 1 (3F , 1C).(2E, 1C)

Transition Relation, Computation

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

16/39

Definition. Let A be a set of labels and S a (not necessarily finite) set of
of states. We call

−→ ⊆ S × A× S

a (labelled) transition relation.

Let S0 ⊆ S be a set of initial states. A (finite or infinite) sequence

s0
a0−→ s1

a1−→ s2
a2−→ . . .

with si ∈ S, ai ∈ A is called computation
of the labelled transition system (S,A,−→, S0) if and only if

• initiation: s0 ∈ S0

• consecution: (si, ai, si+1) ∈−→ for i ∈ N0.

Step and Run-to-Completion

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

17/39

Notions of Steps: The Step

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

18/39

Note: we call one evolution

(σ, ε)
(cons,Snd)
−−−−−−−→

u
(σ′, ε′)

a step.

Thus in our setting, a step often1 directly corresponds to

one object (namely u) taking a single transition between regular states.

(We will extend the concept of “single transition” for hierarchical state machines.)

1 : In case of dispatch and continue with enabled transition.

That is: We’re going for an interleaving semantics without true parallelism.

Notions of Steps: The Run-to-Completion Step

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

19/39

What is a run-to-completion step...?

• Intuition: a maximal sequence of steps of one object,
where the first step is a dispatch step, all later steps are continue steps,
and the last step establishes stability (or object disappears).

Note: while one step corresponds to one transition in the state machine,
a run-to-completion step is in general not syntacically definable:

one transition may be taken multiple times during an RTC-step.

Example:

s1 s2

E[x > 0]/
[x > 0]/x := x− 1

[x = 0]

σ:
: C

x = 2

ε:

E for u

Notions of Steps: The Run-to-Completion Step Cont’d

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

20/39

Proposal: Let

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

. . .
(consn−1,Sndn−1)
−−−−−−−−−−−−→

un−1

(σn, εn), n > 0,

be a finite (!), non-empty, maximal, consecutive sequence such that

• (cons0, Snd0) indicates dispatching to u := u0 (by Rule (ii)),
i.e. cons = {uE}, uE ∈ dom(σ0) ∩ D(E),

• if u becomes stable or disappears, then in the last step, i.e.

∀ i > 0 • (σi(u)(stable) = 1 ∨ u /∈ dom(σi)) =⇒ i = n

Let 0 = k1 < k2 < · · · < kN < n be the maximal sequence of indices
such that uki

= u for 1 ≤ i ≤ N . Then we call the sequence

(σ0(u) =) σk1
(u), σk2

(u) . . . , σkN
(u), σn(u)

a (!) run-to-completion step of u (from (local) configuration σ0(u) to σn(u)).

Divergence

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

21/39

We say, object u can diverge on reception cons0 from (local) configuration σ0(u) if
and only if there is an infinite, consecutive sequence

(σ0, ε0)
(cons0,Snd0)
−−−−−−−−→

u0

(σ1, ε1)
(cons1,Snd1)
−−−−−−−−→

u1

. . .

where ui = u for infinitely many i ∈ N0 and σi(u)(stable) = 0, i > 0,
i.e. u does not become stable again.

Run-to-Completion Step: Discussion.

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

22/39

Our definition of RTC-step takes a global and non-compositional view, that is:

• In the projection onto a single object
we still see the effect of interaction with other objects.

• Adding classes (or even objects) may change the divergence behaviour of existing ones.

• Compositional would be:

the behaviour of a set of objects is determined by the behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Run-to-Completion Step: Discussion.

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

22/39

Our definition of RTC-step takes a global and non-compositional view, that is:

• In the projection onto a single object
we still see the effect of interaction with other objects.

• Adding classes (or even objects) may change the divergence behaviour of existing ones.

• Compositional would be:

the behaviour of a set of objects is determined by the behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an
interleaving of local ones?

Run-to-Completion Step: Discussion.

–
13

–
2

0
16

-1
2

-1
5

–
S

st
m

st
e

p
–

22/39

Our definition of RTC-step takes a global and non-compositional view, that is:

• In the projection onto a single object
we still see the effect of interaction with other objects.

• Adding classes (or even objects) may change the divergence behaviour of existing ones.

• Compositional would be:

the behaviour of a set of objects is determined by the behaviour of each object “in isolation”.

Our semantics and notion of RTC-step doesn’t have this (often desired) property.

Can we give (syntactical) criteria such that any (global) run-to-completion step is an
interleaving of local ones?

Maybe: Strict interfaces. (Proof left as exercise...)

• (A): Refer to private features only via “self”.

(Recall that other objects of the same class can modify private attributes.)

• (B): Let objects only communicate by events, i.e.
don’t let them modify each other’s local state via links at all.

Putting It All Together

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

23/39

Initial States

–
13

–
2

0
16

-1
2

-1
5

–
S

to
g

e
th

e
r

–

24/39

Recall: a labelled transition system is (S,A,−→, S0).

We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Initial States

–
13

–
2

0
16

-1
2

-1
5

–
S

to
g

e
th

e
r

–

24/39

Recall: a labelled transition system is (S,A,−→, S0).

We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model

(CD ,SM ,OD).

And set
S0 = {(σ, ε) | σ ∈ G−1(OD), OD ∈ OD , ε empty}.

Initial States

–
13

–
2

0
16

-1
2

-1
5

–
S

to
g

e
th

e
r

–

24/39

Recall: a labelled transition system is (S,A,−→, S0).

We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model

(CD ,SM ,OD).

And set
S0 = {(σ, ε) | σ ∈ G−1(OD), OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).

We can read that as an abbreviation for an object diagram.

Semantics of UML Model (So Far)

–
13

–
2

0
16

-1
2

-1
5

–
S

to
g

e
th

e
r

–

25/39

The semantics of the UML model

M = (C D ,SM ,OD)

where

• some classes in C D are stereotyped as ‘signal’ (standard),
some signals and attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over C D ,

is the transition system (S,A,−→, S0) constructed on the previous slide(s).

The computations of M are the computations of (S,A,−→, S0).

OCL Constraints and Behaviour

–
13

–
2

0
16

-1
2

-1
5

–
S

to
g

e
th

e
r

–

26/39

• Let M = (CD ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM) similar to Inv(CD).

OCL Constraints and Behaviour

–
13

–
2

0
16

-1
2

-1
5

–
S

to
g

e
th

e
r

–

26/39

• Let M = (CD ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM) similar to Inv(CD).

Pragmatics:

• In UML-as-blueprint mode, if SM doesn’t exist yet, then providing
M = (CD , ∅,OD) is typically asking the developer to provide state
machines SM such that M′ = (C D ,SM ,OD) is consistent.

If the developer makes a mistake, then M′ is inconsistent.

• Not so common (but existing):
If SM is given, then constraints are also considered when choosing transitions in the
RTC-algorithm.
In other words: even in presence of “mistakes”, the state machines in SM never move to
inconsistent configurations.

Rhapsody Demo III: Model Animation

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

27/39

Tell Them What You’ve Told Them. . .

–
13

–
2

0
16

-1
2

-1
5

–
S

tt
w

y
tt

–

37/39

• State Machines induce a labelled transition system.

• There are five kinds of transitions in the LTS:

• discard, dispatch, continue, environment, error.

• For now, we assume that all classes are active,
thus steps of objects may interleave.

• We distinguish steps and run-to-completion step.

• Initial states can be characterised using object diagrams.

• Missing transformers:

• Create: re-use identities vs. use fresh ones.

• Destroy: allow dangling references vs. clean up.

References

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

38/39

References

–
13

–
2

0
16

-1
2

-1
5

–
m

ai
n

–

39/39

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
formal/2011-08-06.

