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• Missing Pieces: Create and Destroy Trans-
formers

• Putting It All Together (Again)

• Initial States

• Consistency wrt. OCL Constraints

• Hierarchical State Machines

• Overview

• Abstract Syntax: States

• pseudo-states, regions, . . .

• (Legal) System Configurations

• Abstract Syntax: Transitions

• Enabledness of Fork/Join Transitions

• scope, priority, maximality, . . .
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Initial States
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Recall: a labelled transition system is (S,A,−→, S0).

We have

• S: system configurations (σ, ε)

• −→: labelled transition relation (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′).

Wanted: initial states S0.

Proposal:

Require a (finite) set of object diagrams OD as part of a UML model

(CD ,SM ,OD).

And set
S0 = {(σ, ε) | σ ∈ G−1(OD), OD ∈ OD , ε empty}.

Other Approach: (used by Rhapsody tool) multiplicity of classes (plus initialisation code).

We can read that as an abbreviation for an object diagram.



Semantics of UML Model (So Far)
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The semantics of the UML model

M = (C D ,SM ,OD)

where

• some classes in C D are stereotyped as ‘signal’ (standard),
some signals and attributes are stereotyped as ‘external’ (non-standard),

• there is a 1-to-1 relation between classes and state machines,

• OD is a set of object diagrams over C D ,

is the transition system (S,A,−→, S0) constructed on the previous slide(s).

The computations of M are the computations of (S,A,−→, S0).

OCL Constraints and Behaviour
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• Let M = (CD ,SM ,OD) be a UML model.

• We call M consistent iff, for each OCL constraint expr ∈ Inv(CD),

σ |= expr for each “reasonable point” (σ, ε) of computations of M.

(Cf. tutorial for discussion of “reasonable point”.)

Note: we could define Inv(SM ) similar to Inv(CD).



Last Missing Piece: Create and Destroy Transformer
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Transformer: Create
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abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the
object denoted by expression expr .

well-typedness

expr : TD , v ∈ atr(D),
atr(C) = {〈v1 : T1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .
observables

. . .
(error) conditions

IJexprK(σ, β) not defined.
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abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the
object denoted by expression expr .

well-typedness

expr : TD , v ∈ atr(D),
atr(C) = {〈v1 : T1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

. . .
observables

. . .
(error) conditions

IJexprK(σ, β) not defined.

• We use an “and assign”-action for simplicity — it doesn’t add or remove expressive power,
but moving creation to the expression language raises all kinds of other problems since
then expressions would need to modify the system state.

• Also for simplicity: no parameters to construction (∼ parameters of constructor).
Adding them is straightforward (but somewhat tedious).

How To Choose New Identities?
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• Re-use: choose any identity that is not alive now, i.e. not in dom(σ).

• Doesn’t depend on history.

• May “undangle” dangling references – may happen on some platforms.

• Fresh: choose any identity that has not been alive ever,
i.e. not in dom(σ) and any predecessor in current run.

• Depends on history.

• Dangling references remain dangling – could mask “dirty” effects of platform.
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abstract syntax concrete syntax

create(C, expr , v)
intuitive semantics

Create an object of class C and assign it to attribute v of the
object denoted by expression expr .

well-typedness

expr : TD , v ∈ atr(D),
atr(C) = {〈v1 : T1, expr

0
i 〉 | 1 ≤ i ≤ n}

semantics

((σ, ε), (σ′, ε′)) ∈ tcreate(C,expr ,v)[ux]

iff
σ′ = σ[u0 7→ σ(u0)[v 7→ u]] ∪ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}},

ε′ = [u](ε); u ∈ D(C) fresh, i.e. u 6∈ dom(σ);
u0 = IJexprK(σ, ux); di = IJexpr0i K(σ, ∅) if expr0i 6= ‘’ and

arbitrary value from D(Ti) otherwise.
observables

Obscreate[ux] = {(∗, u)}
(error) conditions

IJexprK(σ, ux) not defined.

Create Transformer Example
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SMD :
s1 s2

/n := new C

C
x : Int
y : Int = 0

D

n 0, 1

create(C, expr , v)

tcreate(C,expr ,v)[ux](σ, ε) = ...

σ:

1C : C

d : D

n = ∅
stD = s1
stable = 0

:σ′

ε: :ε′



Transformer: Destroy
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abstract syntax concrete syntax

destroy(expr)
intuitive semantics

Destroy the object denoted by expression expr .
well-typedness

expr : TC , C ∈ C

semantics

. . .
observables

Obsdestroy[ux] = {(ux,⊥, (+, ∅), u)}
(error) conditions

IJexprK(σ, β) not defined.

What to Do With the Remaining Objects?
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Assume object u0 is destroyed. . .

• object u1 may still refer to it via association r:

• allow dangling references?

• or remove u0 from σ(u1)(r)?

• object u0 may have been the last one linking to object u2:

• leave u2 alone?

• or remove u2 also? (garbage collection)

• Plus: (temporal extensions of) OCL may have dangling references.

Our choice: Dangling references and no garbage collection!

This is in line with “expect the worst”, because there are target platforms which don’t provide
garbage collection — and models shall (in general) be correct without assumptions on target
platform.

But: the more “dirty” effects we see in the model, the more expensive it often is to analyse.
Valid proposal for simple analysis: monotone frame semantics, no destruction at all.
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abstract syntax concrete syntax

destroy(expr)
intuitive semantics

Destroy the object denoted by expression expr .
well-typedness

expr : TC , C ∈ C

semantics

tdestroy(expr)[ux](σ, ε) = {(σ′, ε)}

where σ′ = σ|dom(σ)\{u} with u = IJexprK(σ, ux).

observables

Obsdestroy(expr)[ux] = {(+, u)}
(error) conditions

IJexprK(σ, ux) not defined.

Destroy Transformer Example
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SMC :
s1 s2

/delete n

destroy(expr)

tdestroy(expr)[ux](σ, ε) = ...

σ:
d : D : C

n :σ′

ε: :ε′



Hierarchical State-Machines
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The Full Story
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UML distinguishes the following kinds of states:

example

simple state

s1
entry/act

entry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example
pseudo-state

initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s



Blessing or Curse. . . ?
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•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Blessing or Curse. . . ?
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•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
For example: From s1, s5,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract
syntax of a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal /
well-formed transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do
transitions have?



Representing All Kinds of States
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• So far:

(S, s0,→), s0 ∈ S, → ⊆ S × (E ∪ {_})× ExprS ×ActS × S

Representing All Kinds of States
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• So far:

(S, s0,→), s0 ∈ S, → ⊆ S × (E ∪ {_})× ExprS ×ActS × S

• From now on: (hierarchical) state machines

(S, kind , region,→, ψ, annot)

where

• S ⊇ {top} is a finite set of states (new: top),

• kind : S → {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}

is a function which labels states with their kind, (new)

• region : S → 22
S

is a function which characterises the regions of a state, (new)

• → is a set of transitions, (changed)

• ψ : (→) → 2S × 2S is an incidence function, and (new)

• annot : (→) → (E ∪ {_})× Expr
S

× ActS

provides an annotation for each transition. (new)

(s0 is then redundant — replaced by proper state (!) of kind ‘init’.)



Well-Formedness: Regions
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∈ S kind region ⊆ 2S, Si ⊆ S child ⊆ S

final state s fin ∅ ∅

pseudo-state s init, . . . ∅ ∅

simple state s st ∅ ∅

composite state s st {S1, . . . , Sn}, n ≥ 1 S1 ∪ · · · ∪ Sn

implicit top state top st {S1} S1

• Final and pseudo states must not comprise regions.

• States s ∈ S with kind(s) = st may comprise regions.

Naming conventions can be defined based on regions:

• No region: simple state.

• One region: OR-state.

• Two or more regions: AND-state.

• Each state (except for top) must lie in exactly one region.

• Note: The region function induces a child function.

• Note: Diagramming tools (like Rhapsody) can ensure well-formedness.

From UML to Hierarchical State Machine: By Example
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(S, kind , region,→, ψ, annot)

example ∈ S kind region

simple state s s st ∅

final state q fin ∅

composite state

OR

s

s1

s2

s3

, s st {{s1, s2, s3}}

AND

s

s1 s2 s3

s′1 s′2 s′3

s st

region

{{s1, s
′

1}, {s2, s
′

2},
{s3, s

′

3}}

submachine state (later) - - -

pseudo-state •, . . . q init, . . . ∅
︸ ︷︷ ︸

(s,kind(s)) for short
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•

s

... denotes (S, kind , region,→, ψ, annot) with

• S = {top, s1, s, s2}

• kind = {top 7→ st, s1 7→ init, s 7→ st, s2 7→ fin}

• or (S, kind) = {(top, st), (s1, init), (s, st), (s2, fin)}

• region = {top 7→ {{s1, s, s2}}, s1 7→ ∅ , s 7→ ∅ , s2 7→ ∅ }

• →, ψ, annot : in a minute.

Recall
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•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
For example: From s1, s5,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract
syntax of a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal /
well-formed transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do
transitions have?



Semantics: State Configuration
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• The type of (implicit attribute) st is from now on a set of states, i.e. D(SMC
) = 2S

• A set S1 ⊆ S is called (legal) state configuration if and only if

• top ∈ S1, and

• for each regionR of a state in S1,
exactly one (non pseudo-state) element of R is in S1, i.e.

∀ s ∈ S1 ∀R ∈ region(s) • |{s ∈ R | kind(s) ∈ {st, fin}} ∩ S1| = 1.

• Examples:

s0

s1

s2
s3

s4

s5

s6 s8 s10

s7 s9 s11

Recall
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•

•
s1

s2
•
s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
For example: From s1, s5,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract
syntax of a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal /
well-formed transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do
transitions have?



Transitions Syntax: Fork/Join
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• For simplicity, we consider transitions with (possibly) multiple sources and targets,
i.e.

ψ : (→) → (2S \ ∅)× (2S \ ∅)

• For instance,

s1

s2

s3

s4

s5

s6

tr [gd ]/act

translates to

(S, kind , region, {t1}
︸︷︷︸

→

, {t1 7→ ({s2, s3}, {s5, s6})}
︸ ︷︷ ︸

ψ

, {t1 7→ (tr , gd , act)}
︸ ︷︷ ︸

annot

)

• Naming convention: ψ(t) = (source(t), target(t)).

Orthogonal States
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• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they “live” in different regions of one AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn}, 1 ≤ i 6= j ≤ n : s1 ∈ child(Si) ∧ s2 ∈ child(Sj),



Legal Transitions
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A hierarchical state-machine (S, kind , region,→, ψ, annot)
is called well-formed if and only if for all transitions t ∈→,

• source (and destination) states are pairwise orthogonal, i.e.

• ∀ s, s′ ∈ source(t) (∈ target(t)) • s ⊥ s′,

• the top state is neither source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

Recall: final states are not sources of transitions.

Example:
•

•

s1

s2
•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Plan
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example

simple state

s1
entry/act

entry
1

do/actdo
1

exit/actexit
1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example
pseudo-state

initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

•

•

s1

s2
•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

• Transitions involving non-pseudo states.

• Initial pseudostate, final state.

• Entry/do/exit actions, internal transitions.

• History and other pseudostates, the rest.



Tell Them What You’ve Told Them. . .
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• For the Create Action, we have two main choices:

• re-use identities (“nasty semantics”),

• use fresh identities (“clean semantics”, depends on history).

Similar for Destroy.

• Hierarchical State Machines introduce Regions.

• Thereby, states can lie within states as children.

• The implicit variable st becomes set-valued.

• Transitions may now have

• multiple source states, multiple destination states,

• but need to adhere to well-formedness conditions.

• Enabledness of a set (!) of transitions
is a bit tricky to define (→ scope, priority, maximality).

• Steps are a proper generalisation of core state machines.
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