Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines II

2017-01-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

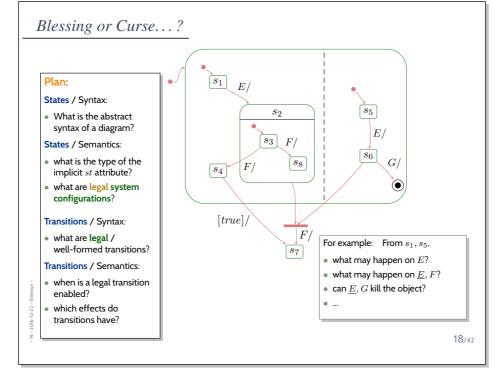
Albert-Ludwigs-Universität Freiburg, Germany

- 15 - 2017-01-10 - 1

Content

Hierarchical State Machines Recall: Abstract Syntax: States (Legal) System Configurations Abstract Syntax: Transitions orthogonal states, legal transitions Enabledness of Fork/Join Transitions least common ancestor, scope, priority and depth, maximality Transitions (or steps) of Hierarchical State Machines

15 - 201/-01-10 - Scontent -



15 - 2017-01-10 - main -

4/35

Representing All Kinds of States

So far:

$$(S, s_0, \rightarrow), \quad s_0 \in S, \quad \rightarrow \subseteq S \times (\mathscr{E} \cup \{_\}) \times \mathit{Expr}_{\mathscr{S}} \times \mathit{Act}_{\mathscr{S}} \times S$$

• From now on: (hierarchical) state machines

 $(S, kind, region, \rightarrow, \psi, annot)$

where

• $S \supseteq \{top\}$ is a finite set of states

(new: top),

kind: S → {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}
 is a function which labels states with their kind,

(new)

 $\bullet \; \; region: S \rightarrow 2^{2^S}$ is a function which characterises the <code>regions</code> of a state,

(new)

• \rightarrow is a set of transitions,

(changed)

• $\psi: (\overset{\cdot}{\rightarrow}) \xrightarrow{\cdot} 2^S \times 2^S$ is an incidence function, and

(new)

• $annot: (\overset{\cdot}{\hookrightarrow}) \rightarrow (\mathscr{E} \cup \{\underline{\ }\}) \times Expr_{\mathscr{S}} \times Act_{\mathscr{S}}$ provides an annotation for each transition.

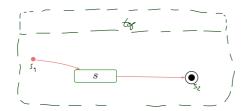
(new)

(s_0 is then redundant – replaced by proper state (!) of kind 'init'.)

19/42

- 2017-01-10 - main

From UML to Hierarchical State Machine: By Example

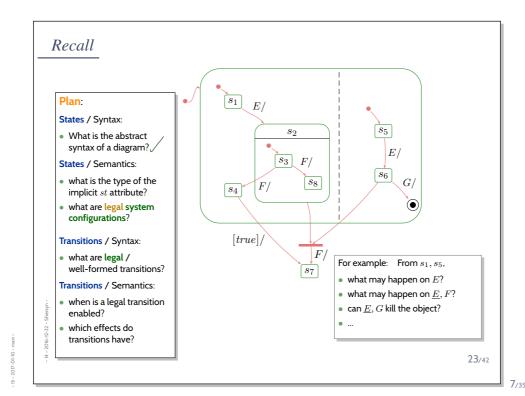


... denotes $(S, kind, region, \rightarrow, \psi, annot)$ with

- $S = \{top, s_1, s, s_2\}$
- $\bullet \ kind = \{top \mapsto \mathsf{st}, s_1 \mapsto \mathsf{init}, s \mapsto \mathsf{st}, s_2 \mapsto \mathsf{fin}\}$
- or $(S, kind) = \{(top, st), (s_1, init), (s, st), (s_2, fin)\}$
- $region = \{top \mapsto \{\{s_1, s, s_2\}\}, s_1 \mapsto \emptyset$, $s \mapsto \emptyset$, $s_2 \mapsto \emptyset$
- \rightarrow , ψ , annot: in a minute.

22/42

- 01-10 - main -

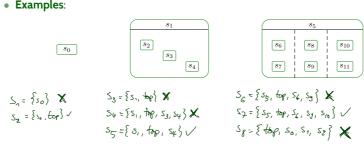


Semantics: State Configuration

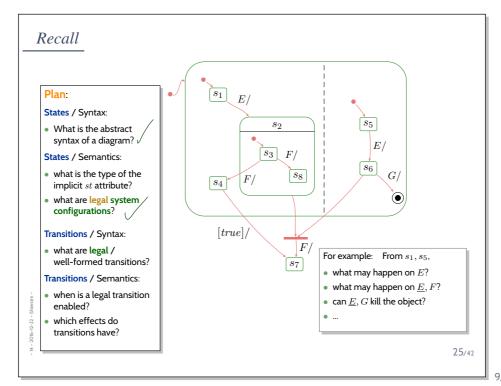
- The type of (implicit attribute) st is from now on a set of states, i.e. $\mathscr{D}(S_{M_C})=2^S$
- A set $S_1 \subseteq S$ is called (legal) state configuration if and only if
 - $top \in S_1$, and
 - for each region R of a state in S_1 , exactly one (non pseudo-state) element of R is in S_1 , i.e.

$$\forall \, s \in S_1 \, \forall \, R \in region(s) \bullet | \{ s \in R \mid kind(s) \in \{ \mathsf{st}, \mathit{fin} \} \} \cap S_1 | = 1.$$

• Examples:



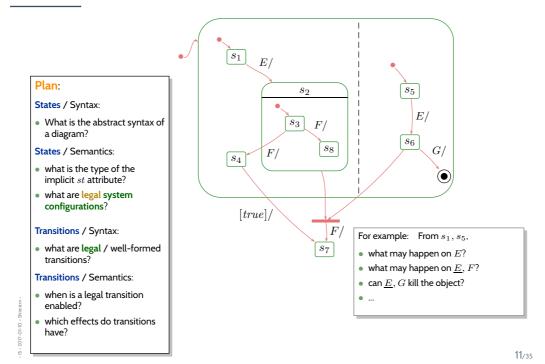
24/42



- 017-01-10 - main -

- 15 - 2017-01-10 - mail

Recall

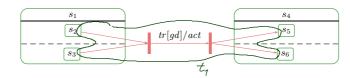


Transitions Syntax: Fork/Join

• For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.

$$\psi: (\to) \to (2^S \setminus \emptyset) \times (2^S \setminus \emptyset)$$

• For instance,



translates to

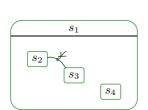
$$(S, kind, region, \underbrace{\{t_1\}}_{\rightarrow}, \underbrace{\{t_1 \mapsto (\{s_2, s_3\}, \{s_5, s_6\})\}}_{\psi}, \underbrace{\{t_1 \mapsto (tr, gd, act)\}}_{annot})$$

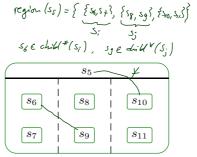
• Naming convention: $\psi(t) = (source(t), target(t))$.

Orthogonal States

- Two states $s_1, s_2 \in S$ are called **orthogonal**, denoted $s_1 \perp s_2$, if and only if
 - they "live" in different regions of one AND-state, i.e.

 $\exists s, region(s) = \{S_1, \dots, S_n\}, 1 \le i \ne j \le n : s_1 \in child(S_i) \land s_2 \in child(S_j),$





13 = 70 I/-0 I-I0

13/35

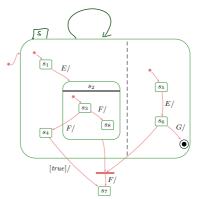
Legal Transitions

A hierarchical state-machine $(S,kind,region,\rightarrow,\psi,annot)$ is called **well-formed** if and only if for all transitions $t\in\rightarrow$,

- source (and destination) states are pairwise orthogonal, i.e.
 - $\forall s \not \models s' \in source(t) \ (\in target(t)) \bullet s \perp s'$,
- the top state is neither source nor destination, i.e.
 - $top \notin source(t) \cup \underset{\text{taiget}}{\textit{source}}(t)$.

Recall: final states are not sources of transitions.

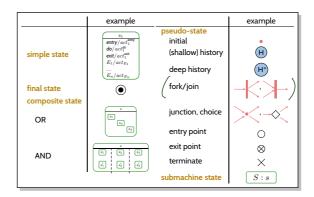
Example:



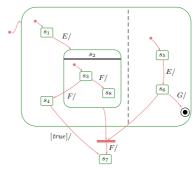
- 1105130115 - 01-10-1105

14/35

Plan



- Transitions involving non-pseudo states.
- Initial pseudostate, final state.
- Entry/do/exit actions, internal transitions.
- History and other pseudostates, the rest.



15/35

Scope

• The scope ("set of possibly affected states") of a transition t is the least common region of

 $source(t) \cup target(t).$

ullet Two transitions t_1,t_2 are called **consistent** if and only if their scopes are disjoint.

- 10 - 2017-01-10 - 311613011-

A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $top \le s$, for all $s \in S$,
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,

•
$$s' \leq s$$
 and $s'' \leq s$ implies $s' \leq s''$ or $s'' \leq s'$.

15 - 2017-01-10 - Shierstm -

17/35

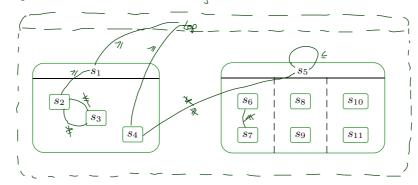
A Partial Order on States

The substate- (or child-) relation induces a partial order on states:

- $\bullet \ \ top \leq s \text{, for all } s \in S \text{,}$
- $s \leq s'$, for all $s' \in child(s)$,
- transitive, reflexive, antisymmetric,

• translate, reflexive, antisymmetric,
$$s' \leq s \text{ and } s'' \leq s \text{ implies } s' \leq s'' \text{ or } s'' \leq s'.$$

OR s>s' if sechild*(s)



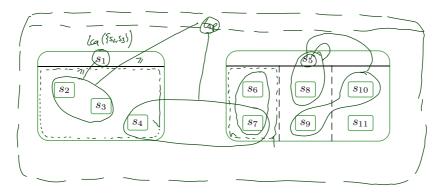
2017-01-10 - Shierstm -

Least Common Ancestor

- \bullet The least common ancestor is the function $lca:2^S \to S$ such that
- \bigcirc The states in S_1 are (transitive) children of $\underline{lca(S_1)}$, i.e.

• Note: $lca(S_1)$ exists for all $S_1 \subseteq S$ (last candidate: top).

=) 3 = lca (S,)

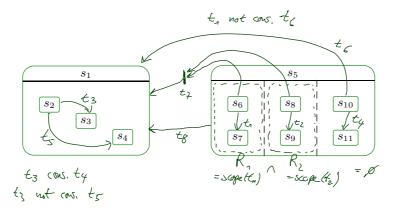


18/35

Scope

• The scope ("set of possibly affected states") of a transition t is the least common region of $\overbrace{\bigvee} source(t) \cup target(t).$

• Two transitions t_1, t_2 are called **consistent** if and only if their scopes are disjoint.



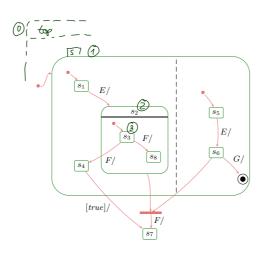
Priority and Depth

• The **priority** of transition t is the depth of its innermost source state, i.e.

 $prio(t) := \max \{ depth(s) \mid s \in source(t) \}$ where

- depth(top) = 0,
- depth(s') = depth(s) + 1, for all $s' \in child(s)$

Example:



17-01-10 - Shierstm

20/35

Enabledness in Hierarchical State-Machines

- A set of transitions $T \subseteq \rightarrow$ is **enabled** for an object u in (σ, ε) if and only if
 - T is consistent,
 - for all $t \in T$, the source states are active, i.e.

$$source(t) \subseteq \sigma(u)(st) \subseteq S$$
.

- $\bullet\,$ all transitions in T have the same trigger tr and
 - ullet tr= _ and u is unstable, or
 - $\bullet \ tr = E \ \text{and there is an} \ E \ \text{ready for} \ u \ \text{in} \ \varepsilon \text{,} \\$
- $\bullet \;$ the guards of all transitions in T are satisfied in $\tilde{\sigma}$ wrt. u , and

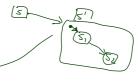
A set T of **enabled transitions** is called **maximal** wrt.

- extension if and only if there is no transition $t' \notin T$ such that $T \cup \{t'\}$ is enabled.
- $\gamma ullet$ priority if and only if for each $t \in T$, there is no $t' \in \to$ such that
 - prio(t') > prio(t),
 - ullet $(T\setminus\{t\})\cup\{t'\}$ is enabled, and
 - $st' \ge st$ for some $st' \in source(t')$ and $st \in source(t)$.

Transitions in Hierarchical State-Machines

- Let T be a maximal (extension and priority) set of transitions enabled for u in (σ, ε) .
- Then $(\sigma, \varepsilon) \xrightarrow{(cons, Snd)}_{u} (\sigma', \varepsilon')$ if
 - $\sigma'(u)(st)$ consists of the target states of T,

i.e. for simple states the simple states themselves, for composite states the initial states,



- $\sigma', \varepsilon', cons$, and Snd are the effect of firing each transition $t \in T$ one by one, in any order, i.e. for each $t \in T$,
 - ullet the exit action transformer (ullet later) of all affected states, highest depth first,
 - the transformer of t,
 - ullet the entry action transformer (o later) of all affected states, lowest depth first.
- → adjust Rules (i), (ii), (iii), (v) accordingly.

(For state machines with only simple states, and no trigger, guard, or action on transitions originating at initial states: Same behaviour as before.)

22/35

Additional Well-Formedness Constraints

- Each non-empty region has **exactly one** initial pseudo-state and **at least one** transition from there to a state of the region, i.e.
 - for each $s \in S$ with $region(s) = \{S_1, \dots, S_n\}$,
 - for each $1 \le i \le n$, there exists exactly one initial pseudo-state $(s_1^i, \mathit{init}) \in S_i$ and at least one transition $t \in \to$ with s_1^i as source,
- Initial pseudo-states are not targets of transitions.

For simplicity:

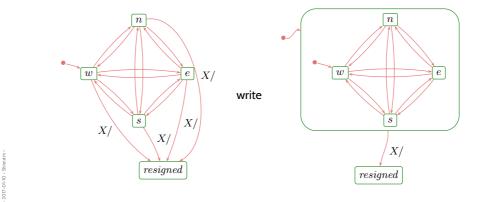
- The target of a transition with initial pseudo-state source in S_i is (also) in S_i .
- Transitions from initial pseudo-states have no trigger or guard, i.e. $t \in \rightarrow$ from s with kind(s) = st implies $annot(t) = (_, true, act)$.
- Final states are not sources of transitions.

5 = 201/-01-10 = SNIGTAR

- 15 - 2017-01-10 - Shierstm -

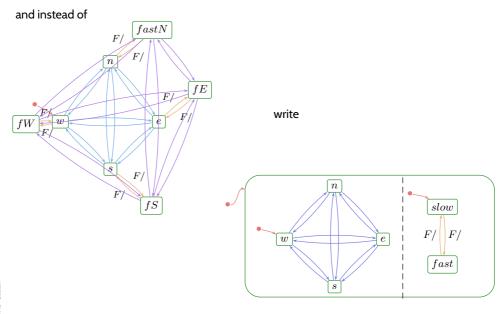
An Intuition for "Or-States"

- In a sense, composite states are about
 - abbreviation,
 - structuring, and
 - avoiding redundancy.
- Idea: instead of



24/35

An Intuition for "And-States"



- 2017-10-10 - SINCISUI

References

34/35

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

- 201/-01-10 - main -