Software Design, Modelling and Analysis in UML

Lecture 17: Live Sequence Charts I

2017-01-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Hierarchical State Machines: Retrospective

The Plan

o Thu, 19. 1: Live Sequence Charts |
Firstly: State-Machines Rest, Code Generation

« Tue, 24. 1: Live Sequence Charts Il

» Thu, 26. 1. Live Sequence Charts Il

« Tue, 31. 1. Tutorial 7

o Thu, 2.2:Model Based/Driven SW Engineering

* Mon, 6.2.: Inheritance

« Tue, 7.2:Meta-Modelling + Questions

February, 17th: The Exam.

Hierarchical State Machines

UML distinguishes the following kinds of states:

example

o
w
N
>

7B

L]
O E—
o @

example

simple state

final state
composite state

OR

pseudo-state
ini
(shallow) history
deep history
fork/join

junction, choice
entry point

exit point
terminate

submachine state

Content

« (Hierarchical) State Machines

o chanchie
AdesespHans
o belavior

* Active vs. Passive Objects
* Methods / Behavioural Features
e Code Generation
{s Discussion

« Reflective Descriptions of Behaviour
Reflective
Interactions

« Live Sequence Charts

;

* Abstract Syntax
* Well-Formedness

(o ABrief History of Sequence Diagrams

Exercise 4.(i)
w
whtn | dsp | st |stable || lock | wis st | stable

0|1 T 1[0 [me 1
o | 1 A ‘o =]
I o T o || 7
" -1 3 1 1 o 5 1
1 -1 3y 1 0 0 52 0
P | s | 1 o o W |1
IR o o |=n]o
o | 2]« o | o ||
I 4o s
1 o s o ol o s o
i o Sy o 1 o s, 1
0 - S, 1 K 0 s, 1
[| s | 2 b | o || ©
4 o | s| o 4 o | s | 7

vl o | | s | Aol s |«

3

Exercise 4 (ii)-(v)

Explain the difference between step and RTC-step.

Is it possible to reach #7?

(iv) Considering the rule for environment interaction,
how does the possible behaviour change?

©) How does the behaviour simulated with Rhapsody
compare to the results from Task (i)?

Active and Passive Objects: Nomenclature

Harel and Gery (1997) propose the following (orthogonal!) notions:

» Aclass (and thus the instances of this class) is either active or passive
as defined by the class diagram. (oo <chie.)

« An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.
« Apassive object doesnt.

« Aclass is either reactive or non-reactive.

 Areactive class has a (non-trivial) state machine.
« Anon-reactive one hasn.

Which combinations do we (not) understand yet?

reactive
non-reactive

10734

Active and Passive Objects

Passive and Reactive / Rhapsody Style: Example

SMe,:
-
prExen wo] [
<5 N s,
& i Sl
%.r
If C was active, too: N«} (el Gl /oo
rasie o7 (0) =L e
(%) RMN; -
o (me
27\

a0

Wanted (C»s in activity group with an D):

&,
B

0 625 20,20 2
2

2

W

What about non-Active Objects?

working under the assumption
thatall classes in the class diagram (and thus all objects) are active.
« Thatis, each object has its own thread of control and is (if stable)
atany time ready to process an event from the ether.
—» steps of active objects can interleave.

But the world doesn't consist of only a¢

ive objects.
For instance, in the Vending Machine from the exer
we could wish to have the whole system live in one thread of control.

So we have to address questions like:
= Canwe send events to a non-active object?
5o, when are these events processed?

Passive Reactive / Rhapsody Style

© Ineach class,
know the

itsAct and useit jectu
2 tou.

If uis an instance of an active class, then u,, =

« Equip all signals with (implicit) association dest and useit to point to the destination object.
For each signal 7, have a version - with an association dest : Cy 1, C' € 6 (no inheritance yet).

] 0

>
:

w]’

Fp 7

123

Passive Reactive / Rhapsody Style

+ In each class, add (implicit link ts Act and use it to make each object u
know the acti o which ble for

If wis an instance of an active class, then u,, = u.
+ Equip al ignals with (implict) association dest and use it to point to the destination object.
For each signal F', have a version Fi- with an association dest : Ci, 1, C € € (no inheritance yet).

Sending an event:

o n!Finui : Cy becomes:

+ Create an instance u,. of Fio, and set u.’s dest o/
wg = o(ur)(n)

* Sendtowu, := o(o(ur)(n))(itsAct),
ie.e =& ® (ua,ue).

123

And What About Methods?

In the current setting, the (local) state of objects is only modified
by actions of transitions, which we abstract to transformers.

In general, there are also methods.

« UML follows an approach to separate
o theinterface declaration from
« theimplementation.

In C++-lingo: distinguish declaration and defi

In UML, the former is called behavioural
feature and can (roughly) be

.

S (T,
Tny) : 11 & F(T2,.
signal)) & |

« acallinterface f(T1,,.

« asignal name £

Note: The signal list can be seen as redundant (can be looked up in the state machine) of the class. But:
certainly useful for documentation (or sanity check).

14734

Passive Reactive / Rhapsody Style

« Ineach cla ik its Act and use it to mak biect u
know the active object u, for tou
If wis an instance of an active class, then u, = u.

« Equip al signals with (impli dest and useit to point
For each signal F', Fe with dest : Co.1.C €6 y

. ug : Gy its Al
e o ue b

Sending an event: ispatching an event:

© nlFinu; : Cy becomes: « Observation: the ether only has events for active ob-
© Create an instance u. of e, and set u,s dest to ects.
ug = o) (n) « Sayu, is ready inthe ether for u,
o Sendtou, = o(a(uy)(n))(itsAct), o Then u, asks o(u,)(dest) = u, to process u, -
ie.e' =< (ua o) and waits until completion of corresponding RTC.

« g mayin particular discard event

1234
Behavioural Features o
& f(Tia,. Tiw) TPy
©F(Ta,... . Tom) T2 Py
[signal) E
Semantics:
« The implementation of a behavioural feature can be provided by:
« An operation.
In our setting, we simply assume a transformer like 7'y
is then, e.g.clear how to s as acti transitions:
but tedious: non-termination).
In a setting with Java as action language: operation is a method body.
« The class state-machine ("triggered operation’). ¥’
o Calling " with n, parameters for a stable instance of C
te event the ether).
 Transition actions may fillin the return value.
= On completion of the RTC step, the call returns.
® For. . the caller
15734

And What About Methods?

1334
Behavioural Features: Visibility and Properties
« Visibility:
+ Extend typing rules to sequences of actions such that
2 well-typed action sequence only calls visible methods.
» Useful properties:
+ concurrency
® concurrent - is thread safe
o guarded i 1
 sequential - is not thread safe, users have to ensure mutual exclusion
« isQuery - doesn't modify the state space (thus thread safe)
1634

A Closer Look to Rhapsody Code Generation

References

1734

333

18734

References

Crane, M. L and Dingel, J. 2007). UML vs. classical vs. thapsody statecharts: not all models are created equal.
Software and Systems Modeling, 6(4)415-435,

Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System
Design, 19(1:45-80.

Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg, O., editor, CAV, volume 1254 of
LNCS, pages 226-231. Springer-Verlag,

Harel, D.and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.

Harel, D.and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams
Software and System Modeling (SoSyM). To appear. (Early version in SCESM06, 2006, pp. 13-20).

Harel, D. and Marelly. R. (2003). Come, Lets Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag

Klose, . (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von
Ossietzky Universitit Oldenburg.

OMG (2007). Unified modeling language: Superstructure, version 21.2. Technical Report formal/07-11-02.
OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.
OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06
Storrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In Jirjens, | Rumpe, B., France, R, and

Fernandez, E. B., editors, CSDUML 2003, number TUM-10323, Technische Universitat Minchen, 3
34

Tell Them What You've Told Them. ..

Rhapsody also supports non-active objects - their instances
share an event pool with an active object.

Behavioural Features: exist.

Semantic Variation Points are legion — but manageable, e.g. by
appropriate modelling guidelines (stick to “the beaten track’),

Interactions can be used for reflective descriptions of behaviour,

« describe what behaviour is (un)desired,
without (yet) defining how to realise if

One visual formalism for interactions: Live Sequence Charts
« partially ordered locations,

« instantaneous and aynchronous messages,

» conditions and local invz

Later: pre-charts.

32

