Software Design, Modelling and Analysis in UML

Lecture 18: Live Sequence Charts II

2017-01-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

> Albert-Ludwigs-Universität Freiburg, Germany

Content

Reflective Descriptions of Behaviour
 - Interactions
 - A Brief History of Sequence Diagrams

- Thu, 19. 1.: Live Sequence Charts I

Firstly: State-Machines Rest, Code Generation
FTue, 24. 1.: Live Sequence Charts II
Thu, 26. 1.: Live Sequence Charts III
Tue, 31. 1.: Tutorial 7

- Thu, 2. 2.: Model Based/Driven SW Engineering

- Mon, 6. 2.: Inheritance
- Tue, 7. 2.: Meta-Modelling + Questions

February, 17th: The Exam.

Constructive Behavioural Modelling in UML: Discussion

Pessimistic view: There are too many...

- For instance,
- allow absence of initial pseudo-states object may then "be" in enclosing state without being in any substate; or assume one of the children states non-deterministically
- (implicitly) enforce determinism, e.g. by considering the order in which things have been added to the CASE tool's repository, or some graphical order (left to right, top to bottom)
- allow true concurrency
- etc. etc.

Exercise: Search the standard for "semantical variation point".

- Crane and Dingel (2007), e.g., provide an in-depth comparison of Statemate, UML, and Rhapsody state machines - the bottom line is:
- the intersection is not empty (i.e. some diagrams mean the same to all three communities)
- none is the subset of another (i.e. each pair of communities has diagrams meaning different things)

Optimistic view:

- tools exist with complete and consistent code generation.
- good modelling-guidelines can contribute to avoiding misunderstandings.

```
~~~~N/66
```


Reflective Descriptions of Behaviour

Constructive vs. Reflective Descriptions

Harel (1997) proposes to distinguish constructive and reflective descriptions:

- A constructive description tells us how things are computed:

"A language is constructive if it contributes to the dynamic semantics of the model.
That is, its constructs contain information needed in executing the model or in translating it into executable code."

- A reflective description tells us what shall (or shall not) be computed:

"Other languages are reflective or assertive,

and can be used by the system modeler to capture parts of the thinking that go into building the model - behavior included -,

to derive and present views of the model, statically or during execution, or to set constraints on behavior in preparation for verification."

Note: No sharp boundaries! (Would be too easy.)

Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interactions.

A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D}, \mathscr{I})$ has a set of interactions \mathscr{I}.

- An interaction $\mathcal{I} \in \mathscr{I}$ can be (OMG claim: equivalently) diagrammed as
- communication diagram (formerly known as collaboration diagram),
- timing diagram, or
- sequence diagram.

8/66

Interactions as Reflective Description

- In UML, reflective (temporal) descriptions are subsumed by interactions.

A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D}, \mathscr{I})$ has a set of interactions \mathscr{I}.

- An interaction $\mathcal{I} \in \mathscr{I}$ can be (OMG claim: equivalently) diagrammed as
- communication diagram (formerly known as collaboration diagram),
- timing diagram, or
- sequence diagram.

8/66

Why Sequence Diagrams?

Most Prominent: Sequence Diagrams - with long history:

- Message Sequence Charts, standardized by the ITU in different versions, often accused to lack a formal semantics.
- Sequence Diagrams of UML 1.x

Most severe drawbacks of these formalisms:

- unclear interpretation: example scenario or invariant?
- unclear activation: what triggers the requirement?
- unclear progress requirement: must all messages be observed?
- conditions merely comments
- no means to express forbidden scenarios

Hence: Live Sequence Charts

- SDs of UML 2.x address some issues,
yet the standard exhibits unclarities and even contradictions Harel and Maoz (2007); Störrle (2003)
- For the lecture, we consider Live Sequence Charts (LSCs) Damm and Harel (2001); Klose (2003); Harel and Marelly (2003),
who have a common fragment with UML 2.x SDs Harel and Maoz (2007)
- Modelling guideline: stick to that fragment.

Course Map

Live Sequence Charts - Syntax

LSC Body Building Blocks

13/66

Full LSC Building Blocks for Later

LSC Body: Abstract Syntax

Definition. [LSC Body]
An LSC body over signature $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ is a tuple

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta)
$$

where

- L is a finite, non-empty of locations with
- a partial order $\preceq \subseteq L \times L$,
- a symmetric simultaneity relation $\sim \subseteq L \times L$ disjoint with \preceq, i.e. $\preceq \cap \sim=\emptyset$,
- $\mathcal{I}=\left\{I_{1}, \ldots, I_{n}\right\}$ is a partitioning of L; elements of \mathcal{I} are called instance line,
- Msg $\subseteq L \times \mathscr{E} \times L$ is a set of messages with $\left(l, E, l^{\prime}\right) \in$ Msg only if $\left(l, l^{\prime}\right) \in \prec \cup \sim$; message $\left(l, E, l^{\prime}\right)$ is called instantaneous iff $l \sim l^{\prime}$ and asynchronous otherwise,
- Cond $\subseteq\left(2^{L} \backslash \emptyset\right) \times$ Expr $_{\mathscr{s}}$ is a set of conditions with $(\bar{L}, \phi) \in$ Cond only if $l \sim l^{\prime}$ for all $l \neq l^{\prime} \in L$,
- Loclnv $\subseteq L \times\{\circ, \bullet\} \times \operatorname{Expr}_{\mathscr{S}} \times L \times\{\circ, \bullet\}$ is a set of local invariants with $\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in$ LocInv only if $l \prec l^{\prime}$, o: exclusive, \bullet : inclusive
- $\Theta: L \cup$ Msg \cup Cond \cup Loclnv $\rightarrow\{$ hot, cold $\}$
 assigns to each location and each element a temperature.

From Concrete to Abstract Syntax

```
- locations L
\preceq\subseteqL\timesL,\quad~\subseteqL\timesL
\mathcal{I}={I
Msg}\subseteqL\times\mathcal{E}\times
- Cond }\subseteq(\mp@subsup{2}{}{L}\\emptyset)\times\mp@subsup{Expr}{\mathscr{S}}{
Loclnv}\subseteqL\times{\circ,\bullet}\times\mp@subsup{\operatorname{Expr}}{\mathscr{S}}{}\timesL\times{\circ,\bullet}
\Theta:L\cupMsg U Cond \cupLoclnv }->{\mathrm{ hot, cold }.
```


From Concrete to Abstract Syntax

```
- locations }L\mathrm{ ,
- \preceq\subseteqL\timesL, ~\subseteqL\timesL
- \mathcal{I}={\mp@subsup{I}{1}{},\ldots,\mp@subsup{I}{n}{}}\mathrm{ ,}
- Msg}\subseteqL\times\mathcal{E}\timesL\mathrm{ ,
- Cond }\subseteq(\mp@subsup{2}{}{L}\\emptyset)\times\mp@subsup{\operatorname{Expr}}{\mathscr{S}}{
```



```
- }\Theta:L\cupMsg\cupCond \cupLoclnv -> {hot, cold }
```


Bondedness/no floating conditions: (could be relaxed a little if we wanted to) YES ;

- For each location $l \in L$, if l is the location of
- a condition, i.e. $\exists(L, \phi) \in$ Cond $: l \in L$, or
- a local invariant, i.e. $\exists\left(l_{1}, \iota_{1}, \phi, l_{2}, \iota_{2}\right) \in \operatorname{Loclnv}: l \in\left\{l_{1}, l_{2}\right\}$,
then there is a location l^{\prime} simultaneous to l, i.e. $l \sim l^{\prime}$, which is the location of
- an instance head, i.e. l^{\prime} is minimal wrt. \preceq, or
- a message, i.e.

$$
\exists\left(l_{1}, E, l_{2}\right) \in \operatorname{Msg}: l \in\left\{l_{1}, l_{2}\right\} .
$$

Note: if messages in a chart are cyclic,
then there doesn't exist a partial order
(so such diagrams don't even have an abstract syntax).

Live Sequence Charts - Semantics

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta)
$$

(ii) construct a TBA $\mathcal{B}_{\mathscr{L}}$, and
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$,
in particular taking activation condition and activation mode into account.
(iv) define language $\mathcal{L}(\mathcal{M})$ of a UML model.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

Definition.
Let $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$ be an LSC body.
A non-empty set $\emptyset \neq C \subseteq L$ is called a cut of the LSC body iff

- it is downward closed, i.e. $\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C$,
- it is closed under simultaneity, i.e.

$$
\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C \text {, and }
$$

- it comprises at least one location per instance line, i.e.

$$
\forall i \in I \exists l \in C \bullet i_{l}=i
$$

Formal LSC Semantics: It's in the Cuts!

Definition.

Let $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$ be an LSC body.
A non-empty set $\emptyset \neq C \subseteq L$ is called a cut of the LSC body iff

- it is downward closed, i.e. $\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C$,
- it is closed under simultaneity, i.e.

$$
\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C \text {, and }
$$

- it comprises at least one location per instance line, i.e.

$$
\forall i \in I \exists l \in C \bullet i_{l}=i
$$

The temperature function is extended to cuts as follows:

$$
\Theta(C)= \begin{cases}\text { hot } & \text {, if } \exists l \in C \bullet\left(\nexists l^{\prime} \in C \bullet l \prec l^{\prime}\right) \wedge \Theta(l)=\text { hot } \\ \text { cold } & \text {, otherwise }\end{cases}
$$

that is, C is hot if and only if at least one of its maximal elements is hot.

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

22/66

Cut Examples

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

Cut Examples
$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

Cut Examples

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

A Successor Relation on Cuts

The partial order " \preceq " and the simultaneity relation " \sim " of locations
induce a direct successor relation on cuts of an LSC body as follows:

Definition.
Let $C \subseteq L$ bet a cut of LSC body $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$.
A set $\emptyset \neq F \subseteq L$ of locations is called fired-set F of cut C if and only if

- $C \cap F=\emptyset$ and $C \cup F$ is a cut, i.e. F is closed under simultaneity,
- all locations in F are direct \prec-successors of the front of C, i.e.

$$
\forall l \in F \exists l^{\prime} \in C \bullet l^{\prime} \prec l \wedge\left(\nexists l^{\prime \prime} \in C \bullet l^{\prime} \prec l^{\prime \prime} \prec l\right),
$$

- locations in F, that lie on the same instance line, are pairwise unordered, i.e.

$$
\forall l \neq l^{\prime} \in F \bullet\left(\exists I \in \mathcal{I} \bullet\left\{l, l^{\prime}\right\} \subseteq I\right) \Longrightarrow l \npreceq l^{\prime} \wedge l^{\prime} \npreceq l,
$$

- for each asynchronous (!) message reception in F, the corresponding sending is already in C,

$$
\forall\left(l, E, l^{\prime}\right) \in \operatorname{Msg} \bullet l^{\prime} \in F \Longrightarrow l \in C .
$$

The cut $C^{\prime}=C \cup F$ is called direct successor of C via F, denoted by $C \rightsquigarrow_{F} C^{\prime}$.

Successor Cut Example
$C \cap F=\emptyset-C \cup F$ is a cut - only direct \prec-successors - same instance line on front pairwise unordered sending of asynchronous reception already in

Successor Cut Example

$C \cap F=\emptyset-C \cup F$ is a cut - only direct \prec-successors - same instance line on front pairwise unordered sending of asynchronous reception already in

Language of LSC Body: Example

Language of LSC Body: Example

Language of LSC Body: Example

The TBA $\mathcal{B}_{\mathscr{L}}$ of LSC \mathscr{L} over Φ and \mathcal{E} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{i n i}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}(X)=\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ (for considered signature \mathscr{S}),
- \rightarrow consists of loops, progress transitions (by \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $Q_{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts and the maximal cut.
- Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $E x p r_{\mathscr{S}}(\mathscr{E}, X)$ are defined by the grammar:

$$
\psi::=\operatorname{true}|\psi| E_{x, y}^{!}\left|E_{x, y}^{?}\right| \neg \psi \mid \psi_{1} \vee \psi_{2},
$$

where expr : Bool $\in \operatorname{Expr}_{\mathscr{S}}, E \in \mathscr{E}, x, y \in X$ (or keyword env).

- We use

$$
\mathscr{E}_{!?}(X):=\left\{E_{x, y}^{!}, E_{x, y}^{?} \mid E \in \mathscr{E}, x, y \in X\right\}
$$

to denote the set of event expressions over \mathscr{E} and X.

TBA Construction Principle

[^0]Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}=\Phi \dot{\cup} \mathscr{E}!?^{(X)}$,
- \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:
$\rightarrow=\{(q$,
, q) $\mid q \in Q\} \cup\{(q$,
,$\left.\left.q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\{(q, \quad, L) \mid q \in Q\}$

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}=\Phi \dot{\cup} \mathscr{E}!?^{(X)}$,
- \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), L\right) \mid q \in Q\right\}
$$

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}=\Phi \dot{\cup} \mathscr{E}!?^{(X)}$,
- \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), L\right) \mid q \in Q\right\}
$$

TBA Construction Principle

"Only" construct the transitions' labels:

Loop Condition

$$
\psi_{\text {loop }}(q)=\psi^{\mathrm{Msg}}(q) \wedge \psi_{\text {hot }}^{\text {Loclnv }}(q) \wedge \psi_{\text {cold }}^{\text {Lollnv }}(q)
$$

- $\psi^{\mathrm{Msg}}(q)=\neg \bigvee_{1 \leq i \leq n} \psi^{\mathrm{Msg}}\left(q, q_{i}\right) \wedge \underbrace{\left(\text { strict } \Longrightarrow \bigwedge_{\psi \in \operatorname{Msg}(L)} \neg \psi\right)}_{=: \psi_{\text {strict }}(q)}$
- $\psi_{\theta}^{\text {Loclnv }}(q)=\bigwedge_{\ell=\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in \text { Loclnv, } \Theta(\ell)=\theta, \ell \text { active at }{ }_{q} \phi}$

A location l is called front location of cut C if and only if $\nexists l^{\prime} \in L \bullet l \prec l^{\prime}$.
Local invariant $\left(l_{o}, \iota_{0}, \phi, l_{1}, \iota_{1}\right)$ is active at cut (!) q
if and only if $l_{0} \preceq l \prec l_{1}$ for some front location l of cut q or $l_{1} \in q \wedge \iota_{1}=\bullet$

- $\operatorname{Msg}(F)=\left\{E_{x_{l}, x_{l^{\prime}}}^{!} \mid\left(l, E, l^{\prime}\right) \in \operatorname{Msg}, l \in F\right\} \cup\left\{E_{x_{l}, x_{l^{\prime}}}^{?} \mid\left(l, E, l^{\prime}\right) \in \mathrm{Msg}, l^{\prime} \in F\right\}$
- $x_{l} \in X$ is the logical variable associated with the instance line I which includes l, i.e. $l \in I$.
- $\operatorname{Msg}\left(F_{1}, \ldots, F_{n}\right)=\bigcup_{1 \leq i \leq n} \operatorname{Msg}\left(F_{i}\right)$

Progress Condition

$$
\psi_{\text {prog }}^{\text {hot }}\left(q, q_{i}\right)=\psi^{\mathrm{Msg}}\left(q, q_{n}\right) \wedge \psi_{\text {hot }}^{\mathrm{Cond}}\left(q, q_{n}\right) \wedge \psi_{\text {hot }}^{\text {Loclnv }, \bullet}\left(q_{n}\right)
$$

- $\psi^{\operatorname{Msg}}\left(q, q_{i}\right)=\bigwedge_{\psi \in \operatorname{Msg}\left(q_{i} \backslash q\right)} \psi \wedge \bigwedge_{j \neq i} \bigwedge_{\psi \in \operatorname{Msg}\left(q_{j} \backslash q\right) \backslash \operatorname{Msg}\left(q_{i} \backslash q\right)} \neg \psi$

$$
\wedge \underbrace{\left(\text { strict } \Longrightarrow \bigwedge_{\psi \in \operatorname{Msg}(L) \backslash \operatorname{Msg}\left(F_{i}\right)} \neg \psi\right)}_{=: \psi_{\text {strict }}\left(q, q_{i}\right)}
$$

- $\psi_{\theta}^{\text {Cond }}\left(q, q_{i}\right)=\bigwedge_{\gamma=(L, \phi) \in \text { Cond }, ~}(\gamma)=\theta, L \cap\left(q_{i} \backslash q\right) \neq \emptyset \phi$
- $\psi_{\theta}^{\text {Loclnv }, \bullet}\left(q, q_{i}\right)=\bigwedge_{\lambda=\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in \operatorname{Loclnv}, \Theta(\lambda)=\theta, \lambda \bullet \text {-active at } q_{i} \phi} \phi$

Local invariant $\left(l_{0}, \iota_{0}, \phi, l_{1}, \iota_{1}\right)$ is $\boldsymbol{\bullet}$-active at q if and only if

> - $l_{0} \prec l \prec l_{1}$, or
> - $l=l_{0} \wedge \iota_{0}=\bullet$, or
> - $l=l_{1} \wedge \iota_{1}=\bullet$
for some front location l of cut (!) q.

Example

Using logical variables x, y, z for the instances lines

(from left to right)

Course Map

- Interactions can be reflective descriptions of behaviour, i.e.
- describe what behaviour is (un)desired,
without (yet) defining how to realise it.
- One visual formalism for interactions: Live Sequence Charts
- locations in diagram induce a partial order,
- instantaneous and aynchronous messages,
- conditions and local invariants
- The meaning of an LSC is defined using TBAs.
- Cuts become states of the automaton.
- Locations induce a partial order on cuts.
- Automaton-transitions and annotations correspond to a successor relation on cuts.
- Annotations use signal / attribute expressions.
- Later:
- TBA have Büchi acceptance (of infinite words (of a model)).
- Full LSC semantics.
- Pre-Charts.

Excursion: Büchi Automata

From Finite Automata to Symbolic Büchi Automata

$\mathcal{B}_{\text {sym }}: \quad \Sigma=(\{x\} \rightarrow \mathbb{N})$

Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where

- X is a set of logical variables,
- $\operatorname{Expr}_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{i n i} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \operatorname{Expr}_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions $\left(q, \psi, q^{\prime}\right)$ from q to q^{\prime} are labelled with an expression $\psi \in \operatorname{Expr}_{\mathcal{B}}(X)$.
- $Q_{F} \subseteq Q$ is the set of fair (or accepting) states.

Definition. Let X be a set of logical variables and let $\operatorname{Expr}_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma, \cdot \vDash \cdot)$ is called an alphabet for $\operatorname{Expr}_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression expr $\in \operatorname{Expr}_{\mathcal{B}}$, and
- for each valuation $\beta: X \rightarrow \mathscr{D}(X)$ of logical variables,
either $\sigma \models_{\beta}$ expr or $\sigma \not \models_{\beta}$ expr.
(σ satisfies (or does not satisfy) expr under valuation β)

An infinite sequence

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma^{\omega}
$$

over $(\Sigma, \cdot \models . \cdot)$ is called word (for $\operatorname{Expr}_{\mathcal{B}}(X)$).

Run of TBA over Word

Definition. Let $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ be a TBA and

$$
w=\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots
$$

a word for $\operatorname{Expr}_{\mathcal{B}}(X)$. An infinite sequence

$$
\varrho=q_{0}, q_{1}, q_{2}, \ldots \in Q^{\omega}
$$

is called run of \mathcal{B} over w under valuation $\beta: X \rightarrow \mathscr{D}(X)$ if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition

$$
\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow
$$

such that $\sigma_{i} \models_{\beta} \psi_{i}$.

Run of TBA over Word

Definition. Let $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right)$ be a TBA and

$$
w=\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots
$$

a word for $\operatorname{Expr}_{\mathcal{B}}(X)$. An infinite sequence

$$
\varrho=q_{0}, q_{1}, q_{2}, \ldots \in Q^{\omega}
$$

is called run of \mathcal{B} over w under valuation $\beta: X \rightarrow \mathscr{D}(X)$ if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition

$$
\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow
$$

such that $\sigma_{i} \models_{\beta} \psi_{i}$.

The Language of a TBA

Definition.
We say TBA $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ accepts the word

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}
$$

if and only if \mathcal{B} has a run

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F} .
$$

We call the set $\mathcal{L}(\mathcal{B}) \subseteq\left(\text { Expr }_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ of words that are accepted by \mathcal{B} the language of \mathcal{B}.

Definition.
We say TBA $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ accepts the word

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}
$$

if and only if \mathcal{B} has a run

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F} .
$$

We call the set $\mathcal{L}(\mathcal{B}) \subseteq\left(\text { Expr }_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ of words that are accepted by \mathcal{B} the language of \mathcal{B}.

Language of UML Model

Recall: A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ and a structure \mathscr{D} denote a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) computations of the form

$$
\begin{array}{r}
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{a_{0}}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{a_{1}}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow{a_{2}} \ldots \text { where } \\
a_{i}=\left(\text { cons }_{i}, \operatorname{Snd}_{i}, u_{i}\right) \in \underbrace{2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \cup\{*,+\}) \times \mathscr{D}(\mathscr{C})} \times \mathscr{D}(\mathscr{C})}_{=: \tilde{A}} .
\end{array}
$$

The Language of a Model

Recall: A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ and a structure \mathscr{D} denote a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) computations of the form

$$
\begin{array}{r}
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{a_{0}}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{a_{1}}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow{a_{2}} \ldots \text { where } \\
a_{i}=\left(\text { cons }_{i}, \operatorname{Snd}_{i}, u_{i}\right) \in \underbrace{2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \cup} \dot{\{*,+\}) \times \mathscr{D}(\mathscr{C})} \times \mathscr{D}(\mathscr{C})}_{=: \tilde{A}} .
\end{array}
$$

For the connection between models and interactions, we disregard the configuration of the ether, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{C D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model and \mathscr{D} a structure. Then

$$
\begin{aligned}
& \mathcal{L}(\mathcal{M}):=\left\{\left(\sigma_{i}, u_{i}, \text { cons }_{i}, \text { Snd }_{i}\right)_{i \in \mathbb{N}_{0} \in\left(\Sigma_{\mathscr{S}}^{\mathscr{S}} \times \tilde{A}\right)^{\omega} \mid}\right. \\
&\left.\exists\left(\varepsilon_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, \text { Snd }_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \cdots \in \llbracket \mathcal{M} \rrbracket\right\}
\end{aligned}
$$

is the language of \mathcal{M}.

$$
\mathcal{L}(\mathcal{M}):=\left\{\left(\sigma_{i}, u_{i}, \text { cons }_{i}, \text { Snd }_{i}\right)_{i \in \mathbb{N}_{0}} \mid \exists\left(\varepsilon_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, \text { Snd }_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \cdots \in \llbracket \mathcal{M} \rrbracket\right\}
$$

$$
\begin{aligned}
& \mathcal{C D} \text { : } \\
& (\sigma, \varepsilon) \xrightarrow[u]{(\text { cons }, S n d)} \cdots \rightarrow\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow[c_{1}]{\left(\text { cons }_{1},\left\{\left(: E, c_{2}\right)\right\}\right)}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow[c_{2}]{\left(\{: E\}, S n d_{2}\right)} \\
& \left(\sigma_{3}, \varepsilon_{3}\right) \xrightarrow[c_{2}]{\left(\operatorname{cons}_{3},\left\{\left(: F, c_{3}\right)\right\}\right)}\left(\sigma_{4}, \varepsilon_{4}\right) \xrightarrow[c_{2}]{\left(\text { cons }_{4},\left\{\left(G(), c_{1}\right)\right\}\right)}\left(\sigma_{5}, \varepsilon_{5}\right) \xrightarrow[c_{3}]{\left(\{: F\}, S n d_{5}\right)}\left(\sigma_{6}, \varepsilon_{6}\right) \rightarrow \cdots
\end{aligned}
$$

Words over Signature

Definition. Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ be a signature and \mathscr{D} a structure of \mathscr{S}.

A word over \mathscr{S} and \mathscr{D} is an infinite sequence

$$
\left(\sigma_{i}, u_{i}, \text { cons }_{i}, S n d_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \mathscr{D}(\mathscr{C}) \times 2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \dot{\cup}\{*,+\}) \times \mathscr{D}(\mathscr{C})}
$$

- The language $\mathcal{L}(\mathcal{M})$ of a UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ is a word over the signature $\mathscr{S}(\mathscr{C} \mathscr{D})$ induced by $\mathscr{C} \mathscr{D}$ and \mathscr{D}, given structure \mathscr{D}.
- Let $(\sigma, u$, cons,$S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \rightarrow \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, u$, cons, Snd $) \models_{\beta}$ true
- $(\sigma, u$, cons, Snd $) \models_{\beta} \psi$ if and only if $I \llbracket \psi \rrbracket(\sigma, \beta)=1$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \neg \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1}$ or $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{2}$
- $(\sigma, u$, cons, Snd $) \models_{\beta} E_{x, y}^{!}$if and only if $\beta(x)=u \wedge \exists e \in \mathscr{D}(E) \bullet(e, \beta(y)) \in S n d$
- $(\sigma, u$, cons,$S n d) \models_{\beta} E_{x, y}$ if and only if $\beta(y)=u \wedge \operatorname{cons} \subset \mathscr{D}(E)$

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, u$, cons,$S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{S}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \rightarrow \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, u$, cons, Snd $) \models_{\beta}$ true
- $(\sigma, u$, cons,$S n d) \models_{\beta} \psi$ if and only if $I \llbracket \psi \rrbracket(\sigma, \beta)=1$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \neg \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1}$ or $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{2}$
- $(\sigma, u$, cons, Snd $) \models_{\beta} E_{x, y}^{!}$if and only if $\beta(x)=u \wedge \exists e \in \mathscr{D}(E) \bullet(e, \beta(y)) \in$ Snd
- $(\sigma, u$, cons, Snd $) \models_{\beta} E_{x, y}^{?}$ if and only if $\beta(y)=u \wedge$ cons $\subset \mathscr{D}(E)$

Observation: we don't use all information from the computation path.
We could, e.g., also keep track of event identities between send and receive.
$\mathcal{C D}$:

$\sigma_{0}: \stackrel{c_{1}: C_{1}}{\stackrel{c_{1}}{\leftrightarrows}} \stackrel{i t c C_{1}}{\stackrel{i t c C_{2}}{\leftrightarrows}} \stackrel{c_{2}: C_{2}}{k=27} \xrightarrow{i t c C_{3}} \xrightarrow{c_{3}: C_{3}}$

$$
\begin{aligned}
& (\sigma, \varepsilon) \xrightarrow{(c o n s, S n d)} \cdots \rightarrow\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\operatorname{cons}_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow[c_{1}]{\left(\operatorname{cons}_{1},\left\{\left(: E, c_{2}\right)\right\}\right)}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow[c_{1}]{\left(\{: E\}, S n d_{2}\right)} \\
& \left(\sigma_{3}, \varepsilon_{3}\right) \xrightarrow{\left(\operatorname{cons}_{3},\left\{\left(: F, c_{3}\right)\right\}\right)}\left(\sigma_{4}, \varepsilon_{4}\right) \xrightarrow{\left(\operatorname{cons}_{4},\left\{\left(G(), c_{1}\right)\right\}\right)}\left(\sigma_{5}, \varepsilon_{5}\right) \xrightarrow{\left(\{: F\}, S n d_{5}\right)}\left(\sigma_{6}, \varepsilon_{6}\right) \rightarrow \cdots
\end{aligned}
$$

- $\beta=\left\{x \mapsto c_{1}, y \mapsto c_{2}, z \mapsto c_{3}\right\}$
- $\left(\sigma_{0}, u_{0}\right.$, cons $\left._{0}, S n d_{0}\right) \models_{\beta} y . k>0$
- $\left(\sigma_{0}, u_{0}\right.$, cons $\left._{0}, S n d_{0}\right) \models_{\beta} x . k>0$
- $\left(\sigma_{1}, c_{1}\right.$, cons $\left._{1},\left\{\left(: E, c_{2}\right)\right\}\right) \models_{\beta} E_{x, y}^{!}$
- $\left(\sigma_{1}, c_{1}\right.$, cons $\left._{1},\left\{\left(: E, c_{2}\right)\right\}\right) \models_{\beta} F_{x, y}^{!}$
- $\cdots \models_{\beta} E_{x, y}^{?}$
- We set $\left(\sigma_{4}, c_{2}\right.$, cons $\left._{4},\left\{G(), c_{1}\right\}\right) \models_{\beta} G_{y, x}!\wedge G_{y, x}$? (triggered operation or method call).

TBA over Signature

Definition. A TBA

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where $\operatorname{Expr}_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ over signature \mathscr{S} is called TBA over \mathscr{S}.

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{i n i}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}=\Phi \dot{\cup} \mathscr{E}!?^{(X)}(X)$,
- \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), L\right) \mid q \in Q\right\}
$$

Course Map

Live Sequence Charts - Semantics Cont'd

Full LSCs

A full LSC $\mathscr{L}=\left(((L, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consists of

- body $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \operatorname{Expr}_{\mathscr{S}}$.
- strictness flag strict (if false, \mathscr{L} is called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\Theta_{\mathscr{L}}=\operatorname{cold}$) or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A full LSC $\mathscr{L}=\left(((L, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consists of

- body ($L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, Θ),
- activation condition $a c_{0} \in E x p r_{\mathscr{S}}$,
- strictness flag strict (if false, \mathscr{L} is called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\left.\Theta_{\mathscr{L}}=\operatorname{cold}\right)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Concrete syntax:

Full LSCs

A full LSC $\mathscr{L}=\left(((L, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consists of

- body $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in$ Expr $_{\mathscr{S}}$,
- strictness flag strict (if false, \mathscr{L} is called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\Theta_{\mathscr{L}}=$ cold) or universal ($\Theta_{\mathscr{L}}=$ hot $)$.

A set of words $W \subseteq\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	$a m=$ initial	$a m=$ invariant
$\frac{0}{0}$	$\begin{aligned} & \exists w \in W \bullet w^{0} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \quad \wedge w^{0} \models \psi_{\text {prog }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \quad \wedge w^{k} \models \psi_{\text {prog }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$
+	$\begin{aligned} & \forall w \in W \bullet w^{0} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \Longrightarrow w^{0} \models \psi_{\text {prog }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \Longrightarrow w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$

where C_{0} is the minimal (or instance heads) cut.

Full LSC Semantics: Example

$$
\begin{aligned}
& (\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)} \cdots \rightarrow\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow[c_{2}]{\left(\text { cons }_{1},\left\{\left(: E, c_{2}\right)\right\}\right)}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow[c_{1}]{\left(\{: E\}, S n d_{2}\right)} \\
& \left(\sigma_{3}, \varepsilon_{3}\right) \xrightarrow{\left(c o n s_{3},\left\{\left(: F, c_{3}\right)\right\}\right)}\left(\sigma_{4}, \varepsilon_{4}\right) \xrightarrow\left[\left(c_{2}\right]{c_{2}}\left(\sigma_{5}, \varepsilon_{5}\right) \xrightarrow[c_{3}]{\left(\{: F\}, S n d_{5}\right)}\left(\sigma_{6}, \varepsilon_{6}\right) \rightarrow \cdots\right.
\end{aligned}
$$

Note: Activation Condition

53/66

Existential LSC Example: Get Change

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta),
$$

(ii) construct a TBA $\mathcal{B}_{\mathscr{L}}$, and
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$,
in particular taking activation condition and activation mode into account.
(iv) define language $\mathcal{L}(\mathcal{M})$ of a UML model.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

A full LSC $\mathscr{L}=\left(P C, M C, a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ actually consist of

- pre-chart $P C=\left(\left(L_{P}, \preceq_{P}, \sim_{P}\right), \mathcal{I}_{P}, \mathscr{S}, \operatorname{Msg}_{P}, \operatorname{Cond}_{P}, \operatorname{Loclnv}_{P}, \Theta_{P}\right)$ (possibly empty),
- main-chart $M C=\left(\left(L_{M}, \preceq_{M}, \sim_{M}\right), \mathcal{I}_{M}, \mathscr{S}, \operatorname{Msg}_{M}, \operatorname{Cond}_{M}, \operatorname{Loclnv}_{M}, \Theta_{M}\right)$ (non-empty),
- activation condition $a c_{0}: B o o l \in \operatorname{Expr}_{\mathscr{S}}$,
- strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\Theta_{\mathscr{L}}=$ cold) or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Pre-Charts Semantics

	$a m=$ initial	$a m=$ invariant
즈 8 11 88 (1)	$\begin{aligned} & \exists \mathrm{w} \in W \exists m \in \mathbb{N}_{0} \bullet \\ & \wedge w^{0} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge \\ & \wedge w^{1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \wedge \\ & \quad w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$	$\begin{aligned} & \exists \mathrm{w} \in W \exists k<m \in \mathbb{N}_{0} \bullet \\ & \wedge w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{k+1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \wedge w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$
	$\begin{aligned} & \forall w \in W \forall m \in \mathbb{N}_{0} \bullet \\ & \wedge w^{0} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \Longrightarrow w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \leq m \in \mathbb{N}_{0} \bullet \\ & \wedge w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{k+1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \Longrightarrow w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$

Note: Sequence Diagrams and (Acceptance) Test

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!

Note: Sequence Diagrams and (Acceptance) Test

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!
(Because they require that the software never ever exhibits the unwanted behaviour.)

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta)
$$

(ii) construct a TBA $\mathcal{B}_{\mathscr{L}}$, and
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$,
in particular taking activation condition and activation mode into account.
(iv) define language $\mathcal{L}(\mathcal{M})$ of a UML model.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

Course Map

- Büchi automata accept infinite words
- if there exists is a run over the word,
- which visits an accepting state infinitely often.
- The language of a model is just a rewriting of computations into words over an alphabet.
- An LSC accepts a word (of a model) if

Existential: at least on word (of the model) is accepted by the constructed TBA,
Universion: all words (of the model) are accepted.

- Activation mode initial activates at system startup (only), invariant with each satisfied activation condition (or pre-chart).
- Pre-charts can be used to state forbidden scenarios.
- Sequence Diagrams can be useful for testing.

References

References

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal. Software and Systems Modeling, 6(4):415-435.

Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System Design, 19(1):45-80.

Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg, O., editor, CAV, volume 1254 of LNCS, pages 226-231. Springer-Verlag.

Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams. Software and System Modeling (SoSyM). To appear. (Early version in SCESM'O6, 2006, pp. 13-20).

Harel, D. and Marelly, R. (2003). Come, Let's Play: Scenario-Based Programming Using LSCs and the Play-Engine. Springer-Verlag.

Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von Ossietzky Universität Oldenburg.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.
OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.
Störrle, H. (2003). Assert, negate and refinement in UML-2 interactions. In Jürjens, J., Rumpe, B., France, R., and Fernandez, E. B., editors, CSDUML 2003, number TUM-IO323. Technische Universität München.

[^0]: Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

 - Q is the set of cuts of $\mathscr{L}, q_{i n i}$ is the instance heads cut,
 - Expr $_{\mathcal{B}}=\Phi \dot{\cup} \mathscr{E}_{!?}(X)$,
 - \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
 - $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

