Software Design, Modelling and Analysis in UML Lecture 19: Live Sequence Charts III

2017-01-26

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

- Live Sequence Charts
 Semantics
 TBA Construction for LSC Body
 - Cuts, Firedsets
 -(Signal / Attribute Expressions
 - Loop / Progress Conditions
 Excursion: Büchi Automata
 Language of a Model
 Full LSCs
 - Existential and Universal
 - \cdot Pre-Charts
 - Forbidden Scenarios
 - LSCs and Tests

Live Sequence Charts - Semantics

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta),
$$

(ii) construct a $\operatorname{TBA} \mathcal{B}_{\mathscr{L}}$, and
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$, in particular taking activation condition and activation mode into account.
(iv) define language $\mathcal{L}(\mathcal{M})$ of a UML model.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

Live Sequence Charts - TBA Construction

Formal LSC Semantics: It's in the Cuts!

Definition.
Let $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$ be an LSC body.
A non-empty set $\emptyset \neq C \subseteq L$ is called a cut of the LSC body iff

- it is downward closed, i.e. $\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \preceq l^{\prime} \Longrightarrow l \in C$,
- it is closed under simultaneity, i.e.

$$
\forall l, l^{\prime} \bullet l^{\prime} \in C \wedge l \sim l^{\prime} \Longrightarrow l \in C \text {, and }
$$

- it comprises at least one location per instance line, i.e.

$$
\forall i \in I \exists l \in C \bullet i_{l}=i .
$$

The temperature function is extended to cuts as follows:

$$
\Theta(C)= \begin{cases}\text { hot } & \text {, if } \exists l \in C \bullet\left(\nexists l^{\prime} \in C \bullet l \prec l^{\prime}\right) \wedge \Theta(l)=\text { hot } \\ \text { cold } & \text {, otherwise }\end{cases}
$$

that is, C is hot if and only if at least one of its maximal elements is hot.

$\emptyset \neq C \subseteq L$ - downward closed - simultaneity closed - at least one loc. per instance line

A Successor Relation on Cuts

The partial order " \preceq " and the simultaneity relation " \sim " of locations
induce a direct successor relation on cuts of an LSC body as follows:

Definition.
Let $C \subseteq L$ bet a cut of LSC body $((L, \preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$.
A set $\emptyset \neq F \subseteq L$ of locations is called fired-set F of cut C if and only if

- $C \cap F=\emptyset$ and $C \cup F$ is a cut, i.e. F is closed under simultaneity,
- all locations in F are direct \prec-successors of the front of C, i.e.

$$
\forall l \in F \exists l^{\prime} \in C \bullet l^{\prime} \prec l \wedge\left(\nexists l^{\prime \prime} \in C \bullet l^{\prime} \prec l^{\prime \prime} \prec l\right),
$$

- locations in F, that lie on the same instance line, are pairwise unordered, i.e.

$$
\forall l \neq l^{\prime} \in F \bullet\left(\exists I \in \mathcal{I} \bullet\left\{l, l^{\prime}\right\} \subseteq I\right) \Longrightarrow l \npreceq l^{\prime} \wedge l^{\prime} \npreceq l,
$$

- for each asynchronous (!) message reception in F, the corresponding sending is already in C,

$$
\forall\left(l, E, l^{\prime}\right) \in \operatorname{Msg} \bullet l^{\prime} \in F \Longrightarrow l \in C .
$$

The cut $C^{\prime}=C \cup F$ is called direct successor of C via F, denoted by $C \rightsquigarrow_{F} C^{\prime}$.

Successor Cut Example
$C \cap F=\emptyset-C \cup F$ is a cut - only direct \prec-successors - same instance line on front pairwise unordered sending of asynchronous reception already in ($*$)

Successor Cut Example

Language of LSC Body: Example

The TBA $\mathcal{B}_{\mathscr{L}}$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{i n i}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}(X)=\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ (for considered signature $\left.\mathscr{S}\right)$,
- \rightarrow consists of loops, progress transitions (by \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $Q_{F}=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts and the maximal cut.
- Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ be a signature and X a set of logical variables,
- The signal and attribute expressions $E x p r_{\mathscr{S}}(\mathscr{E}, X)$ are defined by the grammar:

$$
\psi::=\operatorname{true}\left|E_{x, y}^{!}\right| E_{x, y}^{?}|\neg \psi| \psi_{1} \vee \psi_{2} \mid \text { expr }
$$

where expr : Bool \in Expr $_{\mathscr{S}}, E \in \mathscr{E}, x, y \in X$ (or keyword env).

- We use

$$
\mathscr{E}_{!?}(X):=\left\{E_{x, y}^{!}, E_{x, y}^{?} \mid E \in \mathscr{E}, x, y \in X\right\}
$$

to denote the set of event expressions over \mathscr{E} and X.

TBA Construction Principle

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}=\Phi \dot{\cup} \mathscr{E}_{!?}(X)$,
- \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), L\right) \mid q \in Q\right\}
$$

"Only" construct the transitions' labels:
$\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), L\right) \mid q \in Q\right\}$

13/50

Loop Condition

$$
\psi_{\text {loop }}(q)=\psi^{\mathrm{Msg}}(q) \wedge \psi_{\text {hot }}^{\text {Loclnv }}(q) \wedge \psi_{\text {cold }}^{\text {Loclnv }}(q)
$$

- $\psi^{\mathrm{Msg}}(q)=\neg \bigvee_{1 \leq i \leq n} \psi^{\mathrm{Msg}}\left(q, q_{i}\right) \wedge \underbrace{\left(\text { strict } \Longrightarrow \bigwedge_{\psi \in \operatorname{Msg}(L)} \neg \psi\right)}_{=: \psi_{\text {strict }}(q)}$
- $\psi_{\theta}^{\text {Loclnv }}(q)=\bigwedge_{\ell=\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in \text { Loclnv, } \Theta(\ell)=\theta, \ell \text { active at } q} \phi$

A location l is called front location of cut C if and only if $\nexists l^{\prime} \in L \bullet l \prec l^{\prime}$.
Local invariant $\left(l_{o}, \iota_{0}, \phi, l_{1}, \iota_{1}\right)$ is active at cut (!) q if and only if $l_{0} \preceq l \prec l_{1}$ for some front location l of cut $q\left(\right.$ or $\left.l_{1} \in q \wedge_{l_{1}}=e.\right)$

- $\operatorname{Msg}(F)=\left\{E_{x_{l}, x_{l^{\prime}}}^{!} \mid\left(l, E, l^{\prime}\right) \in \operatorname{Msg}, l \in F\right\} \cup\left\{E_{\dot{x}_{l}, x_{l^{\prime}}}^{?} \mid\left(l, E, l^{\prime}\right) \in \operatorname{Msg}, l^{\prime} \in F\right\}$
- $x_{l} \in X$ is the logical variable associated with the instance line I which includes l, i.e. $l \in I$.
- $\operatorname{Msg}\left(F_{1}, \ldots, F_{n}\right)=\bigcup_{1 \leq i \leq n} \operatorname{Msg}\left(F_{i}\right)$

Progress Condition

$$
\psi_{\text {prog }}^{\text {hot }}\left(q, q_{i}\right)=\psi^{\mathrm{Msg}}\left(q, q_{n}\right) \wedge \psi_{\mathrm{hot}}^{\mathrm{Cond}}\left(q, q_{n}\right) \wedge \psi_{\mathrm{hot}}^{\mathrm{Loclnv}, \bullet}\left(q_{n}\right)
$$

$\psi^{\operatorname{Msg}}\left(q, q_{i}\right)=\bigwedge_{\psi \in \operatorname{Msg}\left(q_{i} \backslash q\right)} \psi \wedge \bigwedge_{j \neq i} \bigwedge_{\psi \in \operatorname{Msg}\left(q_{j} \backslash q\right) \backslash \operatorname{Msg}\left(q_{i} \backslash q\right)} \neg \psi$

$$
\wedge \underbrace{\left(\text { strict } \Longrightarrow \bigwedge_{\psi \in \operatorname{Msg}(L) \backslash \operatorname{Msg}\left(F_{i}\right)} \neg \psi\right)}_{=: \psi_{\text {strict }}\left(q, q_{i}\right)}
$$

- $\psi_{\theta}^{\text {Cons }}\left(q, q_{i}\right)=\bigwedge_{\gamma=(L, \phi) \in \text { Cons, }, \Theta(\gamma)=\theta, L \cap\left(q_{i} \backslash q\right) \neq \emptyset} \phi$
- $\psi_{\theta}^{\text {Loclnv, } \bullet}\left(q, q_{i}\right)=\Lambda_{\lambda=\left(l, \iota, \phi, l^{\prime}, \iota^{\prime}\right) \in \text { Loclnv, }, \Theta(\lambda)=\theta, \lambda \bullet \text {-active at } q_{i} \phi}$

Local invariant $\left(l_{0}, \iota_{0}, \phi, l_{1}, \iota_{1}\right)$ is $\boldsymbol{\bullet}$-active at q if and only if

- $l_{0} \prec l \prec l_{1}$, or
- $l=l_{0} \wedge \iota_{0}=$ •, or
- $l=l_{1} \wedge \iota_{1}=$ -
for some front location l of cut (!) q.

15/50

Example

Using logical variables x, y, z
 for the instances lines (from left to right)

Excursion: Büchi Automata

From Finite Automata to Symbolic Büchi Automata

Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where

- X is a set of logical variables,
- $\operatorname{Expr}_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{\text {ini }} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \operatorname{Expr}_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions $\left(q, \psi, q^{\prime}\right)$ from q to q^{\prime} are labelled with an expression $\psi \in \operatorname{Expr}_{\mathcal{B}}(X)$.
- $Q_{F} \subseteq Q$ is the set of fair (or accepting) states.

Definition. Let X be a set of logical variables and let $\operatorname{Expr}_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.

A set $(\Sigma, \cdot \vDash \cdot)$ is called an alphabet for $\operatorname{Expr}_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression expr $\in \operatorname{Expr}_{\mathcal{B}}$, and
- for each valuation $\beta: X \rightarrow \mathscr{D}(X)$ of logical variables,
either $\sigma \models_{\beta}$ expr or $\sigma \not \models_{\beta}$ expr.
(σ satisfies (or does not satisfy) expr under valuation β)

An infinite sequence

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma^{\omega}
$$

over $(\Sigma, \cdot \models . \cdot)$ is called word (for $\operatorname{Expr}_{\mathcal{B}}(X)$).

Run of TBA over Word

Definition. Let $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ be a TBA and

$$
w=\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots
$$

a word for $\operatorname{Expr}_{\mathcal{B}}(X)$. An infinite sequence

$$
\varrho=q_{0}, q_{1}, q_{2}, \ldots \in Q^{\omega}
$$

is called run of \mathcal{B} over w under valuation $\beta: X \rightarrow \mathscr{D}(X)$ if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition

$$
\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow
$$

such that $\sigma_{i} \models_{\beta} \psi_{i}$.

Definition.
We say TBA $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ accepts the word

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}
$$

if and only if \mathcal{B} has a run

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F} .
$$

We call the set $\mathcal{L}(\mathcal{B}) \subseteq\left(\text { Expr }_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ of words that are accepted by \mathcal{B} the language of \mathcal{B}.

References

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.
OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

