Software Design, Modelling and Analysis in UML Lecture 20: Live Sequence Charts IV

2017-02-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

Excursion: Büchi Automata

From Finite Automata to Symbolic Büchi Automata

Symbolic Büchi Automata

Definition. A Symbolic Büchi Automaton (TBA) is a tuple

$$
\mathcal{B}=(\operatorname{Expr}_{\mathcal{B}}(X), X, \underbrace{Q, q_{\text {ini }}, \rightarrow, Q_{F}})
$$

where

- X is a set of logical variables,
- $\operatorname{Expr}_{\mathcal{B}}(X)$ is a set of Boolean expressions over X,
- Q is a finite set of states,
- $q_{\text {ini }} \in Q$ is the initial state,
- $\rightarrow \subseteq Q \times \operatorname{Expr}_{\mathcal{B}}(X) \times Q$ is the transition relation. Transitions $\left(q, \psi, q^{\prime}\right)$ from q to q^{\prime} are labelled with an expression $\psi \in \operatorname{Expr}_{\mathcal{B}}(X)$.
- $Q_{F} \subseteq Q$ is the set of fair (or accepting) states.

Word

Definition. Let X be a set of logical variables and let $\operatorname{Expr}_{\mathcal{B}}(X)$ be a set of Boolean expressions over X.
A set $(\Sigma, \cdot \models . \cdot)$ is called an alphabet for $\operatorname{Expr}_{\mathcal{B}}(X)$ if and only if

- for each $\sigma \in \Sigma$,
- for each expression expr $\in \operatorname{Expr}_{\mathcal{B}}$, and - for each valuation $\beta: X \rightarrow \mathscr{D}(X)$ of logical variables,

$$
\text { either } \sigma \models_{\beta} \operatorname{expr} \text { or } \sigma \not \models_{\beta} \operatorname{expr} \text {. }
$$

(σ satisfies (or does not satisfy) expr under valuation β)

An infinite sequence

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma^{\omega}
$$

$\operatorname{over}(\Sigma, \cdot \models . \cdot)$ is called word (for $\operatorname{Expr}_{\mathcal{B}}(X)$).

Run of TBA over Word

Definition. Let $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{i n i}, \rightarrow, Q_{F}\right)$ be a TBA and

$$
w=\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots
$$

a word for $\operatorname{Expr}_{\mathcal{B}}(X)$. An infinite sequence

$$
\varrho=q_{0}, q_{1}, q_{2}, \ldots \in Q^{\omega}
$$

is called run of \mathcal{B} over w under valuation $\beta: X \rightarrow \mathscr{D}(X)$ if and only if

- $q_{0}=q_{i n i}$,
- for each $i \in \mathbb{N}_{0}$ there is a transition

$$
\left(q_{i}, \psi_{i}, q_{i+1}\right) \in \rightarrow
$$

such that $\sigma_{i} \models_{\beta} \psi_{i}$.

The Language of a TBA

Definition.
We say TBA $\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ accepts the word

$$
w=\left(\sigma_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}
$$

if and only if has a un

$$
\varrho=\left(q_{i}\right)_{i \in \mathbb{N}_{0}}
$$

over w such that fair (or accepting) states are visited infinitely often by ϱ, i.e., such that

$$
\forall i \in \mathbb{N}_{0} \exists j>i: q_{j} \in Q_{F} .
$$

We call the set $\mathcal{L}(\mathcal{B}) \subseteq\left(\text { Expr }_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ of words that are accepted by \mathcal{B} the language of \mathcal{B}.

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta),
$$

(ii) construct a TBA $\mathcal{B}_{\mathscr{L}}$, and $\sqrt{ }$
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$,
in particular taking activation condition and activation mode into account.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

Language of UML Model

The Language of a Model

Recall: A UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ and a structure \mathscr{D} denote a set $\llbracket \mathcal{M} \rrbracket$ of (initial and consecutive) computations of the form

$$
\begin{array}{r}
\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{a_{0}}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow{a_{1}}\left(\sigma_{2}, \varepsilon_{2}\right) \xrightarrow{a_{2}} \ldots \text { where } \\
a_{i}=\left(\text { cons }_{i}, \operatorname{Snd}_{i}, u_{i}\right) \in \underbrace{2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \cup\{*,+\}) \times \mathscr{D}(\mathscr{C})} \times \mathscr{D}(\mathscr{C})}_{=: \tilde{A}} .
\end{array}
$$

For the connection between models and interactions, we disregard the configuration of the ether, and define as follows:

Definition. Let $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ be a UML model and \mathscr{D} a structure. Then

$$
\begin{aligned}
& \mathcal{L}(\mathcal{M}):=\left\{\left(\sigma_{i}, u_{i}, \text { cons }_{i}, \text { Sid }_{i}\right)_{i \in \mathbb{N}_{0}} \in\left(\Sigma_{\mathscr{S}}^{\mathscr{S}} \times \tilde{A}\right)^{\omega} \mid\right. \\
& \exists\left(\varepsilon_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0},\right. \text { Snd }} \mathbf{~} \\
&\left.\left(\sigma_{1}, \varepsilon_{1}\right) \cdots \in \llbracket \mathcal{M} \rrbracket\right\}
\end{aligned}
$$

is the language of \mathcal{M}.

Example: Language of a Model

$$
\mathcal{L}(\mathcal{M}):=\left\{\left(\sigma_{i}, u_{i}, \text { cons }_{i}, \operatorname{Snd}_{i}\right)_{i \in \mathbb{N}_{0}} \mid \exists\left(\varepsilon_{i}\right)_{i \in \mathbb{N}_{0}}:\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \cdots \in \llbracket \mathcal{M} \rrbracket\right\}
$$

$$
\mathcal{C D}
$$

$\xlongequal[c_{2}]{ }\left(\sigma_{3}, \varepsilon_{3}\right) \xrightarrow[c_{2}]{\left(\text { cons }_{3},\left\{\left(: F, c_{3}\right)\right\}\right)}\left(\sigma_{4}, \varepsilon_{4}\right) \xrightarrow[c_{3}]{\left(\text { cons }_{4},\left\{\left(G(), c_{1}\right)\right\}\right)} \prime^{\prime}\left(\sigma_{5}, \varepsilon_{5}\right) \xrightarrow{\left(\{: F\}, \operatorname{Snd}_{5}\right)}\left(\sigma_{6}, \varepsilon_{6}\right) \rightarrow \cdots$

$$
\begin{aligned}
& \in \operatorname{Lang}(\mu) \\
& \mathcal{L}(\mu) \\
& 0 \quad \beta=\left\{x \mapsto c_{1}, y \mapsto c\right\} \\
& \int_{0} \underbrace{E_{x, y}^{\frac{1}{k}} \wedge\left(x \text { its } c_{2}, k>0\right)}_{a=_{\beta}}
\end{aligned}
$$

Words over Signature

Definition. Let $\mathscr{S}=(\mathscr{T}, \mathscr{C}, V$, atr, $\mathscr{E})$ be a signature and \mathscr{D} a structure of \mathscr{S}.
A word over \mathscr{S} and \mathscr{D} is an infinite sequence

$$
\left(\sigma_{i}, u_{i}, \text { cons }_{i}, \text { Snd }_{i}\right)_{i \in \mathbb{N}_{0}} \in \Sigma_{\mathscr{S}}^{\mathscr{D}} \times \mathscr{D}(\mathscr{C}) \times 2^{\mathscr{D}(\mathscr{E})} \times 2^{(\mathscr{D}(\mathscr{E}) \dot{\cup}\{*,+\}) \times \mathscr{D}(\mathscr{C})}
$$

- The language $\mathcal{L}(\mathcal{M})$ of a UML model $\mathcal{M}=(\mathscr{C} \mathscr{D}, \mathscr{S} \mathscr{M}, \mathscr{O} \mathscr{D})$ is a word over the signature $\mathscr{S}(\mathscr{C} \mathscr{D})$ induced by $\mathscr{C} \mathscr{D}$ and \mathscr{D}, given structure \mathscr{D}.

Satisfaction of Signal and Attribute Expressions

- Let $(\sigma, u$, cons,$S n d) \in \Sigma_{\mathscr{S}}^{\mathscr{S}} \times \tilde{A}$ be a tuple consisting of system state, object identity, consume set, and send set.
- Let $\beta: X \rightarrow \mathscr{D}(\mathscr{C})$ be a valuation of the logical variables.

Then

- $(\sigma, u$, cons,$S n d) \models_{\beta}$ true

- $(\sigma, u$, cons,$S n d) \models_{\beta} \psi$ if and only if $I \llbracket \psi \rrbracket(\sigma, \beta)=1$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \neg \psi$ if and only if not $(\sigma$, cons, Snd $) \models_{\beta} \psi$
- $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1} \vee \psi_{2}$ if and only if $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{1}$ or $(\sigma, u$, cons, Snd $) \models_{\beta} \psi_{2}$

E-identity

- $(\sigma, \underset{\sim}{u}$, cons,$\underset{\sim}{S n d}) \models_{\beta} E_{x, y}^{!}$if and only if $\beta(x)=u \wedge \exists e \in \mathscr{D}(E) \bullet(e, \beta(y)) \in$ Snd
- $(\sigma, u$, cons, Snd $) \models_{\beta} E_{x, y}^{?}$ if and only if $\beta(y)=u \wedge$ cons $\subset \mathscr{D}(E) \wedge$ cons $\neq \varnothing$
"cons is an
Observation: we don't use all information from the computationfparffer-ity"
We could, e.g., also keep track of event identities between send and receive.
$\mathcal{C D}$:

$$
\begin{aligned}
& (\sigma, \varepsilon) \xrightarrow[u]{(c o n s, S n d)} \cdots \rightarrow\left(\sigma_{0}, \varepsilon_{0}\right) \xrightarrow[u_{0}]{\left(\text { cons }_{0}, S n d_{0}\right)}\left(\sigma_{1}, \varepsilon_{1}\right) \xrightarrow[c_{1}]{\left(\text { cons }_{1},\left\{\left(: E, c_{2}\right)\right\}\right)} \\
& \quad\left(\sigma_{3}, \varepsilon_{3}\right) \xrightarrow{\left(c o n s_{3},\left\{\left(: F, c_{3}\right)\right\}\right)}\left(\sigma_{4}, \varepsilon_{4}\right) \xrightarrow[c_{2}]{\left(\text { cons }_{4},\left\{\left(G(), c_{1}\right)\right\}\right)}\left(\sigma_{5}, \varepsilon_{5}\right) \xrightarrow[c_{3}]{\left(\{: F\}, S n d_{5}\right)}\left(\sigma_{6}, \varepsilon_{6}\right) \rightarrow \cdots
\end{aligned}
$$

- $\beta=\left\{x \mapsto c_{1}, y \mapsto c_{2}, z \mapsto c_{3}\right\}$
- $\left(\sigma_{0}, u_{0}\right.$, cons $\left._{0}, S n d_{0}\right) \models_{\beta} \underbrace{y . k>0}$
- $\left(\sigma_{0}, u_{0}\right.$, cons $_{0}$, Snd $\left._{0}\right) \models_{\beta} x . k>0$ (NOT WELL-ŢPED)
- $\left(\sigma_{1}, c_{1}\right.$, cons $\left._{1},\left\{\left(: E^{\prime}, c_{2}\right)\right\}\right) \models_{\beta} \dot{E}_{x, y}^{!}$
$L=\beta(x) \quad L=\beta(y)$
- $\left(\sigma_{1}, c_{1}\right.$, cons $\left._{1},\left\{\left(: E, c_{2}\right)\right\}\right) \models_{\beta} F_{x, y}^{!}$(\quad is not $\left.E\right)$
$\bullet \cdot \models_{\beta} E_{x, y}^{?}$
- We set $\left(\sigma_{4}, c_{2}\right.$, cons $\left.\left._{4},\left\{G(), c_{1}\right\}\right) \models_{\beta} G_{y, x}^{\prime}\right\} \wedge G_{y, x}^{?}$ (triggered operation or method call).

TBA over Signature

Definition. A TBA

$$
\mathcal{B}=\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)
$$

where $\operatorname{Expr}_{\mathcal{B}}(X)$ is the set of signal and attribute expressions $\operatorname{Expr}_{\mathscr{S}}(\mathscr{E}, X)$ over signature \mathscr{S} is called TBA over \mathscr{S}.

Recall: The TBA $\mathcal{B}(\mathscr{L})$ of LSC \mathscr{L} is $\left(\operatorname{Expr}_{\mathcal{B}}(X), X, Q, q_{\text {ini }}, \rightarrow, Q_{F}\right)$ with

- Q is the set of cuts of $\mathscr{L}, q_{\text {ini }}$ is the instance heads cut,
- $\operatorname{Expr}_{\mathcal{B}}=$ E-i $\mathscr{E}_{!?}(X)$, signd /attribute expursions
- \rightarrow consists of loops, progress transitions (from \rightsquigarrow_{F}), and legal exits (cold cond./local inv.),
- $F=\{C \in Q \mid \Theta(C)=$ cold $\vee C=L\}$ is the set of cold cuts.

So in the following, we "only" need to construct the transitions' labels:

$$
\rightarrow=\left\{\left(q, \psi_{\text {loop }}(q), q\right) \mid q \in Q\right\} \cup\left\{\left(q, \psi_{\text {prog }}\left(q, q^{\prime}\right), q^{\prime}\right) \mid q \rightsquigarrow_{F} q^{\prime}\right\} \cup\left\{\left(q, \psi_{\text {exit }}(q), L\right) \mid q \in Q\right\}
$$

Course Map

Live Sequence Charts - Full LSC Semantics

Full LSCs

A full LSC $\mathscr{L}=\left(((L, \preceq, \sim), \mathcal{I}, \operatorname{Msg}\right.$, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consists of

- body ((L, $\preceq, \sim), \mathcal{I}$, Msg, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in$ Expr $_{\mathscr{S}}$.
- strictness flag strict (if false, \mathscr{L} is called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\Theta_{\mathscr{L}}=\operatorname{cold}$) or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Concrete syntax:

A full LSC $\mathscr{L}=\left(((L, \preceq, \sim), \mathcal{I}\right.$, Msg, Cond, Loclnv, $\left.\Theta), a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ consists of

- body $((L, \preceq, \sim), \mathcal{I}, M s g$, Cond, Loclnv, $\Theta)$,
- activation condition $a c_{0} \in \operatorname{Expr}_{\mathscr{S}}$,
- strictness flag strict (if false, \mathscr{L} is called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential ($\left.\Theta_{\mathscr{L}}=\operatorname{cold}\right)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

A set of words $W \subseteq\left(\operatorname{Expr}_{\mathcal{B}} \rightarrow \mathbb{B}\right)^{\omega}$ is accepted by \mathscr{L} if and only if

$\Theta_{\mathscr{L}}$	doshed outhe suffix of ω starting at 1	
$\frac{10}{8}$	$\begin{aligned} & \beta \exists w \in W \bullet w^{0} \models_{\beta} a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \wedge w^{0} \models_{\beta} \psi_{\text {prog }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$	$\begin{aligned} & \beta \exists w \in W \exists k \in \mathbb{N}_{0} \bullet w^{k} \models_{\beta} a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \\ & \wedge w^{k} \models_{\beta} \psi_{\text {prog }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$
\forall	$\left\{\begin{array}{l} \beta \forall w \in W \bullet w^{0} \models_{\beta} a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ \Longrightarrow w^{0} \models_{\beta} \psi_{\text {prog }}\left(\emptyset, C_{0}\right) \wedge w / 1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{array}\right.$	$\begin{aligned} & \mathcal{\beta} \forall w \in W \forall k \in \mathbb{N}_{0} \bullet w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}\right) \\ & \quad \Longrightarrow w^{k} \models \psi_{\text {hot }}^{\text {Cond }}\left(\emptyset, C_{0}\right) \wedge w / k+1 \in \mathcal{L}(\mathcal{B}(\mathscr{L})) \end{aligned}$

where C_{0} is the minimal (or instance heads) cut.

Full LSC Semantics: Example

$x \mapsto c_{1}$
$y \mapsto c_{2}$
$z \mapsto c_{3}$

Note: Activation Condition

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta)
$$

(ii) construct a $\operatorname{TBA} \mathcal{B}_{\mathscr{L}}$, and
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$,
in particular taking activation condition and activation mode into account.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

A full LSC $\mathscr{L}=\left(P C, M C, a c_{0}, a m, \Theta_{\mathscr{L}}\right)$ actually consist of

- pre-chart $P C=\left(\left(L_{P}, \preceq_{P}, \sim_{P}\right), \mathcal{I}_{P}, \mathscr{S}, \operatorname{Msg}_{P}, \operatorname{Cond}_{P}, \operatorname{Loclnv}_{P}, \Theta_{P}\right)$ (possibly empty),
- main-chart $M C=\left(\left(L_{M}, \preceq_{M}, \sim_{M}\right), \mathcal{I}_{M}, \mathscr{S}, \operatorname{Msg}_{M}, \operatorname{Cond}_{M}, \operatorname{Loclnv}_{M}, \Theta_{M}\right)$ (non-empty),
- activation condition $a c_{0}: B o o l \in \operatorname{Expr}_{\mathscr{S}}$,
- strictness flag strict (otherwise called permissive)
- activation mode $a m \in\{$ initial, invariant $\}$,
- chart mode existential $\left(\Theta_{\mathscr{L}}=\operatorname{cold}\right)$ or universal $\left(\Theta_{\mathscr{L}}=\right.$ hot $)$.

Pre-Charts Semantics

	$a m=$ initial	$a m=$ invariant	
$\begin{aligned} & \text { ㅁ } \\ & \hline 0 \\ & \\| \\ & \text { I } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \exists w \in W \exists m \in \mathbb{N}_{0} \bullet \\ & \quad \wedge w^{0} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \wedge w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$	$\begin{aligned} & \exists w \in W \exists k<m \in \mathbb{N}_{0} \bullet \\ & \quad \wedge w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{k+1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \wedge w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$	
+ O ॥ \& \& (1)	$\begin{aligned} & \forall w \in W \forall m \in \mathbb{N}_{0} \bullet \\ & \wedge w^{0} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \quad \Longrightarrow w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$	$\begin{aligned} & \forall w \in W \forall k \leq m \in \mathbb{N}_{0} \bullet \\ & \wedge w^{k} \models a c \wedge \neg \psi_{\text {exit }}\left(C_{0}^{P}\right) \wedge \psi_{\text {prog }}\left(\emptyset, C_{0}^{P}\right) \\ & \wedge w^{k+1}, \ldots, w^{m} \in \mathcal{L}(\mathcal{B}(P C)) \\ & \wedge w^{m+1} \models \neg \psi_{\text {exit }}\left(C_{0}^{M}\right) \\ & \Longrightarrow w^{m+1} \models \psi_{\text {prog }}\left(\emptyset, C_{0}^{M}\right) \\ & \quad \wedge w / m+2 \in \mathcal{L}(\mathcal{B}(M C)) \end{aligned}$	

Note: Sequence Diagrams and (Acceptance) Test

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!

- Existential LSCs* may hint at test-cases for the acceptance test! (*: as well as (positive) scenarios in general, like use-cases)
- Universal LSCs (and negative/anti-scenarios) in general need exhaustive analysis!
(Because they require that the software never ever exhibits the unwanted behaviour.)

Plan:
(i) Given an LSC \mathscr{L} with body

$$
((L, \preceq, \sim), \mathcal{I}, \text { Msg, Cond, Loclnv, } \Theta)
$$

(ii) construct a TBA $\mathcal{B}_{\mathscr{L}}$, and
(iii) define language $\mathcal{L}(\mathscr{L})$ of \mathscr{L} in terms of $\mathcal{L}\left(\mathcal{B}_{\mathscr{L}}\right)$,
in particular taking activation condition and activation mode into account.
(iv) define language $\mathcal{L}(\mathcal{M})$ of a UML model.

- Then $\mathcal{M} \models \mathscr{L}$ (universal) if and only if $\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\mathscr{L})$.

And $\mathcal{M} \models \mathscr{L}$ (existential) if and only if $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\mathscr{L}) \neq \emptyset$.

Course Map

- The meaning of an LSC is defined using TBAs.
- Cuts become states of the automaton.
- Locations induce a partial order on cuts.
- Automaton-transitions and annotations correspond to a successor relation on cuts.
- Annotations use signal / attribute expressions.
- Büchi automata accept infinite words
- if there exists is a run over the word,
- which visits an accepting state infinitely often.
- The language of a model is just a rewriting of computations into words over an alphabet.
- An LSC accepts a word (of a model) if

Existential: at least on word (of the model) is accepted by the constructed TBA,
Universion: all words (of the model) are accepted.

- Activation mode initial activates at system startup (only), invariant with each satisfied activation condition (or pre-chart).

34/36

References

References

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.
OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

