
–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

Software Design, Modelling and Analysis in UML

Lecture 16: Hierarchical State Machines III

2017-01-12

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
16

–
2

0
17

-0
1-

12
–

S
co

n
te

n
t

–

2/29

• Hierarchical State Machines

• Additional Well-Formedness Constraints

• An(other) intuition for hierarchical states

• Entry and Exit Actions

• Initial and Final States

• Rhapsody Demo: Automated Tests

• Hierarchical State Machines: The Rest

• History Connectors

• Junction and Choice

• Entry and Exit Points

• Terminate

• Active vs. Passive Objects



Additional Well-Formedness Constraints

–
16

–
2

0
17

-0
1-

12
–

S
st

m
w

f
–

3/29

• Each non-empty region has exactly one initial pseudo-state
and at least one transition from there to a state of the region, i.e.

• for each s ∈ S with region(s) = {S1, . . . , Sn},

• for each 1 ≤ i ≤ n, there exists exactly one initial pseudo-state (si1, init) ∈ Si and
at least one transition t ∈→ with si1 as source,

• Initial pseudo-states are not targets of transitions.

For simplicity:

• The target of a transition with initial pseudo-state source in Si is (also) in Si.

• Transitions from initial pseudo-states have no trigger or guard,
i.e. t ∈→ from s with kind(s) = st implies annot(t) = (_, true, act).

• Final states are not sources of transitions.

•

s

tr

DON’T!

[gd ]

DON’T!

/act

annot

An Intuition for “Or-States”

–
16

–
2

0
17

-0
1-

12
–

S
st

m
in

tu
i–

4/29

• In a sense, composite states are about

• abbreviation,

• structuring, and

• avoiding redundancy.

• Idea: instead of

n

•

w e

s

resigned

X/
X/

X/

X/

write

•

n

•

w e

s

resigned

X/



An Intuition for “And-States”

–
16

–
2

0
17

-0
1-

12
–

S
st

m
in

tu
i–

5/29

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

F/

F/

F/

F/

F/

F/

write

•

n

•

w e

s

•

slow

fast

F/F/

Entry and Exit Actions

–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

6/29



Entry/Do/Exit Actions

–
16

–
2

0
17

-0
1-

12
–

S
e

n
tr

ye
xi

t
–

7/29

s1

entry/act
entry
1

do/actdo
1

exit/act exit
1

E1/actE1

. . .
En/actEn

s2

entry/act
entry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act• In general, with each state
s ∈ S there is associated

• an entry, a do, and an exit
action (default: skip)

• a possibly empty set of
trigger/action pairs called internal transitions, (default: empty).

Note: ‘entry’, ‘do’, ‘exit’ are reserved names; E1, . . . , En ∈ E .

• Recall: each action is supposed to have a transformer; assume t
act

entry
1

, tactexit
1

, . . .

• Taking the transition above then amounts to applying

t
act

entry
2

◦ tact ◦ tactexit
1

instead of just
tact

 adjust Rules (ii), (iii), and (v) accordingly.

Internal Transitions

–
16

–
2

0
17

-0
1-

12
–

S
e

n
tr

ye
xi

t
–

8/29

s1

entry/act
entry
1

do/actdo
1

exit/act exit
1

E1/actE1

. . .
En/actEn

s2

entry/act
entry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• Taking an internal transition, e.g. on E1, only executes tactE1
.

• Intuition: The state is neither left nor entered, so: no exit, no entry action.

• Note: internal transitions also start a run-to-completion step.

 adjust Rules (i), (ii), and (v) accordingly.

Note: the standard seems not to clarify whether internal transitions have priority over regular transitions
with the same trigger at the same state.

Some code generators assume that internal transitions have priority!



Alternative View: Entry / Exit / Internal as Abbreviations

–
16

–
2

0
17

-0
1-

12
–

S
e

n
tr

ye
xi

t
–

9/29

s0

s1
entry/act

entry
1

exit/actexit
1

E1/actE1

s2
entry/act

entry
2

exit/actexit
2

tr0[gd0
]/act0 tr1[gd1

]/act1

tr2[gd2
]/act2

Can be viewed as abbrevation for . . .

s0 s1 s2

• That is: Entry / Internal / Exit don’t add expressive power to Core State Machines.

If internal actions should have priority, s1 can be embedded into an OR-state.

• The "‘abbreviation view"’ may avoid confusion in the context of hierarchical states.

Do Actions

–
16

–
2

0
17

-0
1-

12
–

S
e

n
tr

ye
xi

t
–

10/29

s1

entry/act
entry
1

do/actdo
1

exit/act exit
1

E1/actE1

. . .
En/actEn

s2

entry/act
entry
2

do/actdo
2

exit/actexit
2

tr [gd ]/act

• Intuition: after entering a state, start its do-action.

• If the do-action terminates,

• then the state is considered completed (like reaching a final state child (→ in a minute)),

• otherwise,

• if the state is left before termination, the do-action is stopped.

• Recall the overall UML State Machine philosophy:

“An object is either idle or doing a run-to-completion step.”

• Now, what is it exactly while the do action is executing...?



Initial and Final States

–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

11/29

Initial Pseudostate

–
16

–
2

0
17

-0
1-

12
–

S
in

it
fi

n
–

12/29

•

s0

s

s1 s2

s2,1 s2,2
•

s3

/act1

tr [gd]/act
•

/act2
/act3

Principle:

• when entering a non-simple state,

• then go to the destination state of a transition with initial pseudo-state source,

• execute the action of the chosen initiation transition(s) between exit and entry actions.

Recall: For simplicity, we assume exactly one initiation transition per non-empty region.

Could also be: "‘at least one"’ and choosing one non-deterministically.

Special case: the region of top .

• If class C has a state-machine, then “create-C transformer” is the concatenation of

• the transformer of the “constructor” of C (here not introduced explicitly) and

• a transformer corresponding to one initiation transition of the top region.



Final States

–
16

–
2

0
17

-0
1-

12
–

S
in

it
fi

n
–

13/29

annot

• If (σ, ε)
(cons,Snd)
−−−−−−→

u
(σ′, ε′)

and all simple states s in σ′(u)(st) are final, i.e. kind(s) = fin, then

• stay unstable if there is a common parent of the simple states in σ(u)(st)
which is source of a transition without trigger and satisfied guard,

• otherwise kill (destroy) object u.

 adjust Rules (i), (ii), (iii), and (v) accordingly.

Observation: u never “survives” reaching a state (s, fin) with s ∈ child(top).

Observation:

s1 s2 s3
E/act1 /act2

vs.

s1

s2

•

s3
E/act1 /act2

Rhapsody Demo: Automated Testing

–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

14/29



–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

15/29

The Concept of History, and Other Pseudo-States

–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

16/29



History and Deep History: By Example

–
16

–
2

0
17

-0
1-

12
–

S
h

is
t

–

17/29

susp

•

s0

act

H H∗

•

s1 s2

s3
sb

•

s4

s5

E/

B/

C/

D/

F/

Rs/

Rd/
A/

S/

Rs/ Rd/

What happens on...

• Rs?
s0, s2

• Rd?
s0, s2

• A,B,C, S,Rs?
s0, s1, s2, s3, susp, s3

• A,B,C, S,Rd?
s0, s1, s2, s3, susp, s3

• A,B,C,D,E, S,Rs?
s0, s1, s2, s3, s4, s5, susp, s3

• A,B,C,D,E, S,Rd?
s0, s1, s2, s3, s4, s5, susp, s5

Junction and Choice

–
16

–
2

0
17

-0
1-

12
–

S
h

is
t

–

18/29

• Junction (“static conditional branch”): •

[gd
1
]/a

ct 1

[gd
2 ]/act

2

• Choice: (“dynamic conditional branch”)



Junction and Choice

–
16

–
2

0
17

-0
1-

12
–

S
h

is
t

–

18/29

• Junction (“static conditional branch”): •

[gd
1
]/a

ct 1

[gd
2 ]/act

2

• good: abbreviation

• unfolds to so many similar transitions with different guards,
the unfolded transitions are then checked for enabledness

• at best, start with trigger, branch into conditions, then apply actions

• Choice: (“dynamic conditional branch”)

• evil: may get stuck

• enters the transition without knowing whether there’s an enabled path

• at best, use “else” and convince yourself that it cannot get stuck

• maybe even better: avoid

Entry and Exit Point, Submachine State, Terminate

–
16

–
2

0
17

-0
1-

12
–

S
h

is
t

–

19/29

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s



Entry and Exit Point, Submachine State, Terminate

–
16

–
2

0
17

-0
1-

12
–

S
h

is
t

–

19/29

• Hierarchical states can be “folded” for readability.
(but: this can also hinder readability.)

• Can even be taken from a different state-machine for re-use. S : s

• Entry/exit points ,

• Provide connection points for finer integration into the current level,
finer than just via initial state.

• Semantically a bit tricky:

• First the exit action of the exiting state,

• then the actions of the transition,

• then the entry actions of the entered state,

• then action of the transition from the entry point to an internal state,

• and then that internal state’s entry action.

• Terminate Pseudo-State

• When a terminate pseudo-state is reached,
the object taking the transition is immediately killed.

Tell Them What You’ve Told Them. . .

–
16

–
2

0
17

-0
1-

12
–

S
tt

w
y

tt
–

27/29

• OR- and AND-states could also be explained as an “unfolding”
into core state machines.

• They add conciseness, not expressive power.

• The remaining pseudo-states (history, junction, choice, etc.) are
not so difficult.

• Modelling guideline: Avoid choice.

• Rhapsody also supports non-active objects — their instances
share an event pool with an active object.



References

–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

28/29

References

–
16

–
2

0
17

-0
1-

12
–

m
ai

n
–

29/29

Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31–42.

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.


