
–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

Software Design, Modelling and Analysis in UML

Lecture 15: Hierarchical State Machines II

2017-01-10

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content

–
15

–
2

0
17

-0
1-

10
–

S
co

n
te

n
t

–

2/35

• Hierarchical State Machines

• Recall:

• Abstract Syntax: States

• (Legal) System Configurations

• Abstract Syntax: Transitions

• orthogonal states,

• legal transitions

• Enabledness of Fork/Join Transitions

• least common ancestor,

• scope,

• priority and depth,

• maximality

• Transitions (or steps)
of Hierarchical State Machines

Recall

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

3/35

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

4/35

Blessing or Curse. . . ?

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
y

n
–

18/42

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
For example: From s1, s5,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract
syntax of a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal /
well-formed transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do
transitions have?

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

5/35

Representing All Kinds of States

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
y

n
–

19/42

• So far:

(S, s0,�), s0 � S, � � S × (E � {_})× ExprS × ActS × S

• From now on: (hierarchical) state machines

(S, kind , region,�,�, annot)

where

• S � {top} is a finite set of states (new: top),

• kind : S � {st, init, fin, shist, dhist, fork, join, junc, choi, ent, exi, term}

is a function which labels states with their kind, (new)

• region : S � 22
S

is a function which characterises the regions of a state, (new)

• � is a set of transitions, (changed)

• � : (�) � 2S × 2S is an incidence function, and (new)

• annot : (�) � (E � {_})× Expr
S

× ActS

provides an annotation for each transition. (new)

(s0 is then redundant — replaced by proper state (!) of kind ‘init’.)

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

6/35

From UML to Hierarchical State Machine: By Example

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
y

n
–

22/42

•

s

... denotes (S, kind , region,�,�, annot) with

• S = {top, s1, s, s2}

• kind = {top 7� st, s1 7� init, s 7� st, s2 7� fin}

• or (S, kind) = {(top, st), (s1, init), (s, st), (s2, fin)}

• region = {top 7� {{s1, s, s2}}, s1 7� � , s 7� � , s2 7� � }

• �,�, annot : in a minute.

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

7/35

Recall

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
y

n
–

23/42

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
For example: From s1, s5,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract
syntax of a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal /
well-formed transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do
transitions have?

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

8/35

Semantics: State Con�guration

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
y

n
–

24/42

• The type of (implicit attribute) st is from now on a set of states, i.e. D(SMC
) = 2S

• A set S1 � S is called (legal) state configuration if and only if

• top � S1, and

• for each region R of a state in S1,
exactly one (non pseudo-state) element of R is in S1, i.e.

� s � S1 �R � region(s) • |{s � R | kind(s) � {st, fin}} � S1| = 1.

• Examples:

s0

s1

s2
s3

s4

s5

s6 s8 s10

s7 s9 s11

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

9/35

Recall

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
tm

–

25/42

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/
For example: From s1, s5,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract
syntax of a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal /
well-formed transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do
transitions have?

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

10/35

Blessing or Curse. . . ?

–
14

–
2

0
16

-1
2

-2
2

–
S

h
ie

rs
y

n
–

18/42

•

•
s1

s2
•

s3

s8s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Recall

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

11/35

•

•

s1

s2
•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/ For example: From s1, s5 ,

• what may happen on E?

• what may happen on E,F ?

• can E,G kill the object?

• ...

Plan:

States / Syntax:

• What is the abstract syntax of
a diagram?

States / Semantics:

• what is the type of the
implicit st attribute?

• what are legal system
configurations?

Transitions / Syntax:

• what are legal / well-formed
transitions?

Transitions / Semantics:

• when is a legal transition
enabled?

• which effects do transitions
have?

Transitions Syntax: Fork/Join

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

12/35

• For simplicity, we consider transitions with (possibly) multiple sources and targets, i.e.

ψ : (→) → (2S \ ∅)× (2S \ ∅)

• For instance,

s1

s2

s3

s4

s5

s6

tr [gd]/act

translates to

(S, kind , region, {t1}
︸︷︷︸

→

, {t1 7→ ({s2, s3}, {s5, s6})}
︸ ︷︷ ︸

ψ

, {t1 7→ (tr , gd , act)}
︸ ︷︷ ︸

annot

)

• Naming convention: ψ(t) = (source(t), target(t)).

Orthogonal States

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

13/35

• Two states s1, s2 ∈ S are called orthogonal, denoted s1 ⊥ s2, if and only if

• they “live” in different regions of one AND-state, i.e.

∃ s, region(s) = {S1, . . . , Sn}, 1 ≤ i 6= j ≤ n : s1 ∈ child(Si) ∧ s2 ∈ child(Sj),

s1

s2
s3

s4

s5

s6 s8 s10

s7 s9 s11

Legal Transitions

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

14/35

A hierarchical state-machine (S, kind , region,→, ψ, annot)
is called well-formed if and only if for all transitions t ∈→,

• source (and destination) states are pairwise orthogonal, i.e.

• ∀ s, s′ ∈ source(t) (∈ target(t)) • s ⊥ s′ ,

• the top state is neither source nor destination, i.e.

• top /∈ source(t) ∪ source(t).

Recall: final states are not sources of transitions.

Example:

•

•

s1

s2

•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Plan

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

15/35

example

simple state

s1
entry/act

entry
1

do/actdo
1

exit/act exit
1

E1/actE1

. . .
En/actEn

final state

composite state

OR

s

s1

s2

s3

AND

s

s1 s2 s3

s′1 s′2 s′3

example

pseudo-state
initial •

(shallow) history H

deep history H∗

fork/join ,

junction, choice • ,

entry point

exit point

terminate

submachine state S : s

•

•

s1

s2

•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

• Transitions involving non-pseudo states.

• Initial pseudostate, final state.

• Entry/do/exit actions, internal transitions.

• History and other pseudostates, the rest.

Scope

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

16/35

• The scope (“set of possibly affected states”) of a transition t
is the least common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are disjoint.

A Partial Order on States

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

17/35

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

A Partial Order on States

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

17/35

The substate- (or child-) relation induces a partial order on states:

• top ≤ s, for all s ∈ S,

• s ≤ s′, for all s′ ∈ child(s),

• transitive, reflexive, antisymmetric,

• s′ ≤ s and s′′ ≤ s implies s′ ≤ s′′ or s′′ ≤ s′.

s1

s2
s3

s4

s5

s6 s8 s10

s7 s9 s11

Least Common Ancestor

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

18/35

• The least common ancestor is the function lca : 2S → S such that

• The states in S1 are (transitive) children of lca(S1), i.e.

lca(S1) ≤ s, for alls ∈ S1 ⊆ S,

• lca(S1) is maximal, i.e. if ŝ ≤ s for all s ∈ S1, then ŝ ≤ lca(S1)

• Note: lca(S1) exists for all S1 ⊆ S (last candidate: top).

s1

s2
s3

s4

s5

s6 s8 s10

s7 s9 s11

Scope

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

19/35

• The scope (“set of possibly affected states”) of a transition t
is the least common region of

source(t) ∪ target(t).

• Two transitions t1, t2 are called consistent if and only if their scopes are disjoint.

s1

s2
s3

s4

s5

s6 s8 s10

s7 s9 s11

Priority and Depth

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

20/35

• The priority of transition t is the depth of its innermost source state, i.e.

prio(t) := max{depth(s) | s ∈ source(t)}
where

• depth(top) = 0,

• depth(s′) = depth(s) + 1, for all s′ ∈ child(s)

Example:

•

•

s1

s2

•

s3

s8
s4

•

s5

s6

E/

F/

F/
E/

G/

s7

[true]/

F/

Enabledness in Hierarchical State-Machines

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

21/35

• A set of transitions T ⊆→ is enabled for an object u in (σ, ε) if and only if

• T is consistent,

• for all t ∈ T , the source states are active, i.e.

source(t) ⊆ σ(u)(st) (⊆ S).

• all transitions in T have the same trigger tr and

• tr = _ and u is unstable, or

• tr = E and there is an E ready for u in ε,

• the guards of all transitions in T are satisfied in σ̃ wrt. u, and

A set T of enabled transitions is called maximal wrt.

• extension if and only if there is no transition t′ /∈ T such that T ∪ {t′} is enabled.

• priority if and only if for each t ∈ T , there is no t′ ∈→ such that

• prio(t′) > prio(t),

• (T \ {t}) ∪ {t′} is enabled, and

• st′ ≥ st for some st ′ ∈ source(t′) and st ∈ source(t).

Transitions in Hierarchical State-Machines

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

22/35

• Let T be a maximal (extension and priority) set of transitions enabled for u in (σ, ε).

• Then (σ, ε)
(cons,Snd)
−−−−−−→u (σ′, ε′) if

• σ′(u)(st) consists of the target states of T ,

i.e. for simple states the simple states themselves,
for composite states the initial states,

• σ′, ε′ , cons , and Snd are the effect of firing each transition t ∈ T
one by one, in any order, i.e. for each t ∈ T ,

• the exit action transformer (→ later) of all affected states, highest depth first,

• the transformer of t,

• the entry action transformer (→ later) of all affected states, lowest depth first.

 adjust Rules (i), (ii), (iii), (v) accordingly.

(For state machines with only simple states, and no trigger, guard, or action on transitions originating at

initial states: Same behaviour as before.)

Additional Well-Formedness Constraints

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

23/35

• Each non-empty region has exactly one initial pseudo-state
and at least one transition from there to a state of the region, i.e.

• for each s ∈ S with region(s) = {S1, . . . , Sn},

• for each 1 ≤ i ≤ n, there exists exactly one initial pseudo-state (si1, init) ∈ Si and
at least one transition t ∈→ with si1 as source,

• Initial pseudo-states are not targets of transitions.

For simplicity:

• The target of a transition with initial pseudo-state source in Si is (also) in Si.

• Transitions from initial pseudo-states have no trigger or guard,
i.e. t ∈→ from s with kind(s) = st implies annot(t) = (_, true, act).

• Final states are not sources of transitions.

•

s

tr

DON’T!

[gd]

DON’T!

/act

annot

An Intuition for “Or-States”

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

24/35

• In a sense, composite states are about

• abbreviation,

• structuring, and

• avoiding redundancy.

• Idea: instead of

n

•
w e

s

resigned

X/
X/

X/

X/

write

•

n

•
w e

s

resigned

X/

An Intuition for “And-States”

–
15

–
2

0
17

-0
1-

10
–

S
h

ie
rs

tm
–

25/35

and instead of

n

fastN

•

wfW e

fE

s

fS

F/

F/

F/

F/

F/

F/

F/

F/

write

•

n

•
w e

s

•

slow

fast

F/F/

References

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

34/35

References

–
15

–
2

0
17

-0
1-

10
–

m
ai

n
–

35/35

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

