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• Recall: Basic Causality Model

• Event Pool

• insert, remove, clear, ready.

• System Configuration

• implicit attributes:
stable , st , and friends.

• system state plus event pool

• Actions

• simple action language.

• transformer: effects of actions.
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Roadmap: Chronologically
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Syntax:

(i) UML State Machine Diagrams.

(ii) Def.: Signature with signals.

(iii) Def.: Core state machine.

(iv) Map UML State Machine Diagrams
to core state machines.

Semantics:
The Basic Causality Model

(v) Def.: Ether (aka. event pool)

(vi) Def.: System configuration.

(vii) Def.: Event.

(viii) Def.: Transformer.

(ix) Def.: Transition system, computation.

(x) Transition relation induced by core state ma-
chine.

(xi) Def.: step, run-to-completion step.

(xii) Later: Hierarchical state machines.
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15.3.12 StateMachine (OMG, 2011b, 574)
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• Event occurrences are detected, dis-
patched, and then processed by the state
machine, one at a time.

• The semantics of event occurrence pro-
cessing is based on the run-to- comple-
tion assumption, interpreted as run-to-
completion processing.

• Run-to-completion processing means
that an event [...] can only be taken from
the pool and dispatched if the processing
of the previous [...] is fully completed.

• The processing of a single event occur-
rence by a state machine is known as a
run-to-completion step.

• Before commencing on a run-to-
completion step, a state machine is
in a stable state configuration with all
entry/exit/internal-activities (but not
necessarily do-activities) completed.

• The same conditions apply after the run-
to-completion step is completed.

• Thus, an event occurrence will never be
processed [...] in some intermediate and in-
consistent situation.

• [IOW,] The run-to-completion step is the
passage between two state configurations
of the state machine.

• The run-to-completion assumption sim-
plifies the transition function of the StM,
since concurrency conflicts are avoided
during the processing of event, allowing
the StM to safely complete its run-to-
completion step.

• The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

• Run-to-completion may be implemented
in various ways. [...]



–
11

–
2

0
16

-1
2

-0
8

–
m

ai
n

–

5/34

Example
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C
x : Int D

s1 s2

s3

•
E[n 6= �]/x := x+ 1;n !F

/n := �F/x := 0

SMC :

s1 s2

• F/

/p !F

:SMD

n

0..1p

0..1

hhsignalii

E

hhsignalii

F

(�1, �1)

u1 : C

x = 27
st = s1
stb = 1

u2 : D

st = s1
stb = 1

np

u3 : E

to u1

(�2, �2)

u1 : C

x = 28
st = s2
stb = 0

u2 : D

st = s1
stb = 1

np

u4 : F

to u2

(�3, �3)

u1 : C

x = 28
st = s3
stb = 0

u2 : D

st = s1
stb = 1

p

u4 : F

to u2

(�4, �4)

u1 : C

x = 28
st = s3
stb = 0

u2 : D

st = s2
stb = 0

p

({E}, {F})

u1

(�, �)

u1

({F}, �)

u2

Ether
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Recall: 15.3.12 StateMachine (OMG, 2011b, 563)
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• The order of dequeuing is not defined,
leaving open the possibility of modeling
different priority-based schemes.

Ether and OMG (2011b)
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The standard distinguishes (among others)

• SignalEvent (OMG, 2011b, 450) and Reception (OMG, 2011b, 447).

On SignalEvents, it says

A signal event represents the receipt of an asynchronous signal instance.
A signal event may, for example, cause a state machine to trigger a transition. (OMG,
2011b, 449) [...]

Semantic Variation Points

The means by which requests are transported to their target depend on the type of
requesting action, the target, the properties of the communication medium, and
numerous other factors.

In some cases, this is instantaneous and completely reliable while in others it may
involve transmission delays of variable duration, loss of requests, reordering, or
duplication.

(See also the discussion on page 421.) (OMG, 2011b, 450)

Our ether (→ in a minute) is a general representation of many possible choices.

Often seen minimal requirement: order of sending by one object is preserved.



Ether aka. Event Pool
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Definition. Let S = (T,C, V, atr , E ) be a signature with signals and D a
structure.

We call a tuple (Eth, ready,⊕,⊖, [ · ]) an ether over S and D if and only
if it provides

• a ready operation which yields a set of events (i.e., signal instances) that
are ready for a given object, i.e.

ready : Eth × D(C ) → 2D(E )

• a operation to insert an event for a given object, i.e.

⊕ : Eth × D(C )× D(E ) → Eth

• a operation to remove an event, i.e.

⊖ : Eth × D(E ) → Eth

• an operation to clear the ether for a given object, i.e.

[ · ] : Eth × D(C ) → Eth.

Example: FIFO Queue

–
11

–
2

0
16

-1
2

-0
8

–
S

e
th

e
r

–

10/34

A (single, global, shared, reliable) FIFO queue is an ether:

• Eth = (D(C )× D(E ))∗

the set of finite sequences of pairs (u, e) ∈ D(C )× D(E )

• ready : Eth × D(C ) → 2D(E )

((u1, e).ε, u2) 7→

{

{(u1, e)} , if u1 = u2

∅ , otherwise

• ⊕ : Eth × D(C )× D(E ) → Eth

(ε, u, e) 7→ ε.(u, e)

• ⊖ : Eth × D(E ) → Eth

(ε.(u, e1), e2) 7→

{

ε , if e2 = e1

ε.(u, e1) , otherwise

• [ · ] : Eth × D(C ) → Eth

remove all (u, e) from ε



Other Examples
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• One FIFO queue per active object is an ether.

• One-place buffer.

• Priority queue.

• Multi-queues (one per sender).

• Trivial example: sink, “black hole”.

• Lossy queue (⊕ needs to become a relation then).

• . . .

System Configuration
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System Configuration
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Definition. Let S0 = (T0,C0, V0, atr0, E ) be a signature with signals, D0 a structure of
S0, (Eth, ready ,⊕,⊖, [ · ]) an ether over S0 and D0.

Furthermore assume there is one core state machine MC per class C ∈ C .

A system configuration over S0, D0, and Eth is a pair

(σ, ε) ∈ ΣD

S × Eth

where

• S = (T0 ∪̇ {SMC
| C ∈ C0}, C0,

V0 ∪̇ {〈stable : Bool ,−, true, ∅〉}

∪̇ {〈stC : SMC
,+, s0, ∅〉 | C ∈ C }

∪̇ {〈paramsE : E0,1,+, ∅, ∅〉 | E ∈ E0},

{C 7→ atr0(C)

∪ {stable, stC} ∪ {paramsE | E ∈ E0} | C ∈ C }, E0)

• D = D0 ∪̇ {SMC
7→ S(MC) | C ∈ C }, and

• σ(u)(r) ∩ D(E0) = ∅ for each u ∈ dom(σ) and r ∈ V0.

System Configuration: Example
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C
x : Int

〈〈signal〉〉

E
b : Bool

〈〈signal〉〉

F
a : Int

SMC :

s1

s2 s3

•

c 0..1

S0 = (T0,C0, V0, atr0, E ), D0; (σ, ε) ∈ ΣD
S

× Eth where

• S = (T0 ∪̇ {SMC
| C ∈ C }, C0,

V0 ∪̇ {〈stable : Bool ,−, true, ∅〉} ∪̇ {〈stC : SMC
,+, s0, ∅〉 | C ∈ C }

∪̇ {〈paramsE : E0,1,+, ∅, ∅〉 | E ∈ E0},

{C 7→ atr0(C) ∪ {stable, stC} ∪ {paramsE | E ∈ E0} | C ∈ C }, E0)

• D = D0 ∪̇ {SMC
7→ S(MC) | C ∈ C }, and

• σ(u)(r) ∩ D(E0) = ∅ for each u ∈ dom(σ) and r ∈ V0.



System Configuration Step-by-Step
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• We start with some signature with signals S0 = (T0,C0, V0, atr0, E ).

• A system configuration is a pair (σ, ε) which
comprises a system state σ wrt. S (not wrt. S0).

• Such a system state σ wrt. S provides, for each object u ∈ dom(σ),

• values for the explicit attributes in V0,

• values for a number of implicit attributes, namely

• a stability flag, i.e. σ(u)(stable) is a boolean value,

• a current (state machine) state, i.e. σ(u)(st) denotes one of the states of core state
machine MC ,

• a temporary association to access event parameters for each class, i.e. σ(u)(paramsE)
is defined for each E ∈ E .

• For convenience require: there is no link to an event except for paramsE .

Stability
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Definition.
Let (σ, ε) be a system configuration over some S0, D0, Eth .

We call an object u ∈ dom(σ) ∩ D(C0) stable in σ if and only if

σ(u)(stable) = true.
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C
x : Int D

s1 s2

s3

•
E[n 6= ∅]/x := x+ 1;n !F

/n := ∅F/x := 0

SMC :

s1 s2

• F/

/p !F

:SMD

n

0..1p

0..1

〈〈signal〉〉

E

〈〈signal〉〉

F

(σ1, ε1)

u1 : C

x = 27
st = s1
stb = 1

u2 : D

st = s1
stb = 1

np
u3 : E

to u1

(σ2, ε2)

u1 : C

x = 28
st = s2
stb = 0

u2 : D

st = s1
stb = 1

np
u4 : F

to u2

(σ3, ε3)

u1 : C

x = 28
st = s3
stb = 1

u2 : D

st = s1
stb = 1

p
u4 : F

to u2

(σ4, ε4)

u1 : C

x = 28
st = s3
stb = 1

u2 : D

st = s2
stb = 0

p

({E}, {F})

u1

(∅, ∅)

u1

({F}, ∅)

u2

Transformer
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• The (simplified) syntax of transition annotations:

annot ::=
[

〈event〉 [ ‘[’ 〈guard〉 ‘]’ ] [ ‘/’ 〈action〉]
]

• Clear: 〈event〉 is from E of the corresponding signature.

• But: What are 〈guard〉 and 〈action〉?

• UML can be viewed as being parameterized in expression language
(providing 〈guard〉) and action language (providing 〈action〉).

• Examples:

• Expression Language:

• OCL

• Java, C++, . . . expressions

• . . .

• Action Language:

• UML Action Semantics, “Executable UML”

• Java, C++, . . . statements (plus some event send action)

• . . .

Needed: Semantics
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In the following, we assume that we’re given

• an expression language Expr for guards, and

• an action language Act for actions,

and that we’re given

• a semantics for boolean expressions in form of a partial function

IJ · K( · , · ) : Expr × ΣD

S × D(C ) 7→ B

which evaluates expressions in a given system configuration,

Assuming I to be partial is a way to treat “undefined” during runtime. If I is not defined (for

instance because of dangling-reference navigation or division-by-zero), we want to go to a

designated “error” system configuration.

• a transformer for each action: for each act ∈ Act , we assume to have

tact ⊆ D(C )× (ΣD

S × Eth)× (ΣD

S × Eth)
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Definition.
Let ΣD

S
the set of system configurations over some S0, D0, Eth .

We call a relation

t ⊆ D(C )× (ΣD

S × Eth)× (ΣD

S × Eth)

a (system configuration) transformer.

Example:

• t[ux](σ, ε) ⊆ ΣD
S

× Eth is

• the set (!) of the system configurations

• which may result from object ux

• executing transformer t.

• tskip[ux](σ, ε) = {(σ, ε)}

• tcreate[ux](σ, ε) : add a previously non-alive object to σ

Observations
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• In the following, we assume that

• each application of a transformer t

• to some system configuration (σ, ε)

• for object ux

is associated with a set of observations

Obst[ux](σ, ε) ∈ 2(D(E ) ∪̇ {∗,+})×D(C ).

• An observation
(ue, udst ) ∈ Obs t[ux](σ, ε)

represents the information that,
as a “side effect” of object ux executing t in system configuration (σ, ε),
the event ue has been sent to udst .

Special cases: creation (’∗’) / destruction (’+’).
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In the following we use

ActS = {skip}

∪ {update(expr1, v, expr2) | expr1, expr2 ∈ ExprS , v ∈ atr}

∪ {send(E(expr1, ..., exprn), exprdst ) | expr i, exprdst ∈ ExprS , E ∈ E }

∪ {create(C, expr , v) | C ∈ C , expr ∈ ExprS , v ∈ V }

∪ {destroy(expr) | expr ∈ ExprS }

and OCL expressions over S (with partial interpretation) as ExprS .

Transformer Examples: Presentation
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abstract syntax concrete syntax

op

intuitive semantics

. . .
well-typedness

. . .
semantics

((σ, ε), (σ′, ε′)) ∈ top[ux] iff . . .
or

top[ux](σ, ε) = {(σ′, ε′) | where . . .}
observables

Obsop[ux] = {. . . }
(error) conditions

Not defined if . . .



Transformer: Skip
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abstract syntax concrete syntax

skip

intuitive semantics

do nothing
well-typedness

./.
semantics

tskip[ux](σ, ε) = {(σ, ε)}
observables

Obsskip[ux](σ, ε) = ∅
(error) conditions

Transformer: Update
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abstract syntax concrete syntax

update(expr1, v, expr2)
intuitive semantics

Update attribute v in the object denoted by expr1 to the value
denoted by expr2.

well-typedness

expr1 : TC and v : T ∈ atr(C); expr2 : T ;
expr1, expr2 obey visibility and navigability

semantics

tupdate(expr1,v,expr2)[ux](σ, ε) = {(σ′, ε)}

where σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, ux)]] with

u = IJexpr1K(σ, ux).
observables

Obsupdate(expr1,v,expr2)[ux] = ∅
(error) conditions

Not defined if IJexpr1K(σ, ux) or IJexpr2K(σ, ux) not defined.
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SMC :
s1 s2

/x := x+ 1

tupdate(expr
1
,v,expr

2
)[ux](σ, ε) = (σ′ = σ[u 7→ σ(u)[v 7→ IJexpr2K(σ, ux)]], ε), u = IJexpr1K(σ, ux)

σ: u1 : C

x = 4
y = 0

u1 : C

x = 5
y = 0

:σ′

ε: :ε′

Transformer: Send
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abstract syntax concrete syntax

send(E(expr1, ..., exprn), exprdst)
intuitive semantics

Object ux : C sends event E to object exprdst , i.e. create a fresh signal
instance, fill in its attributes, and place it in the ether.

well-typedness
E ∈ E ; atr(E) = {v1 : T1, . . . , vn : Tn}; expr i : Ti, 1 ≤ i ≤ n;

exprdst : TD , C,D ∈ C \ E ;
all expressions obey visibility and navigability in C

semantics
(σ′, ε′) ∈ tsend(E(expr

1
,...,expr

n
),exprdst )

[ux](σ, ε)

if σ′ = σ ∪̇ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}}; ε′ = ε⊕ (udst , u);

if udst = IJexprdstK(σ, ux) ∈ dom(σ); di = IJexpr iK(σ, ux) for
1 ≤ i ≤ n;

u ∈ D(E) a fresh identity, i.e. u 6∈ dom(σ),

and where (σ′, ε′) = (σ, ε) if udst 6∈ dom(σ).

observables
Obssend[ux] = {(ue, udst )}

(error) conditions
IJexprK(σ, ux) not defined for any expr ∈ {exprdst , expr1, . . . , exprn}



Send Transformer Example
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SMC :
s1 s2

/n !F (x+ 1)

tsend(exprsrc ,E(expr1,...,exprn),exprdst )
[ux](σ, ε) ∋ (σ′, ε′) iff ε′ = ε⊕ (udst , u);

σ′ = σ ∪̇ {u 7→ {vi 7→ di | 1 ≤ i ≤ n}}; udst = IJexprdstK(σ, ux) ∈ dom(σ);

di = IJexpr iK(σ, ux), 1 ≤ i ≤ n; u ∈ D(E) a fresh identity;

σ: u1 : C

x = 5

:σ′

ε: :ε′

Sequential Composition of Transformers
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• Sequential composition t1 ◦ t2 of transformers t1 and t2 is canonically defined as

(t2 ◦ t1)[ux](σ, ε) = t2[ux](t1[ux](σ, ε))

with observation

Obs(t2◦t1)[ux](σ, ε) = Obs t1 [ux](σ, ε) ∪Obst2 [ux](t1(σ, ε)).

• Clear: not defined if one the two intermediate “micro steps” is not defined.



Transformers And Denotational Semantics
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Observation: our transformers are in principle the denotational semantics of the
actions/action sequences. The trivial case, to be precise.

Note: with the previous examples, we can capture

• empty statements, skips,

• assignments,

• conditionals (by normalisation and auxiliary variables),

• create/destroy (later),

but not possibly diverging loops.

Our (Simple) Approach: if the action language is, e.g. Java,
then (syntactically) forbid loops and calls of recursive functions.

Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
transition cycles in the state machine.

Tell Them What You’ve Told Them. . .
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• A ether is an abstract representation of different possible
“event pools” like

• FIFO queues (shared, or per sender),

• One-place buffers,

• . . .

• A system configuration consists of

• an event pool (pending messages),

• a system state over a signature with
implicit attributes for

• current state,

• stability,

• etc.

• Transitions are labelled with actions, the effect
of actions is explained by transformers,
transformers may modify system state and ether.
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