Software Design, Modelling and Analysis in UML

Lecture 8: Class Diagrams II1

2016-11-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Recall: Plan & Extended Signature

Course Map

< w0g = (03, comsi, Sndi)),ens

Overview

+ Class diagram

(e

-)
b (et]
== =

Alternative presentation

+ Example system state:
o= {lcm v 20,4 o, To))
50 {e s (e b To = fem (1))

+ Object diagram:

Class diagram (with ternary association):
asseoitin, eos/

Signature: extend again to represent
» association r with

bandz
bty etc)

« association
feach with m

Example systemstate: (g;1)
o= {1ar {w13),15 0,17 = 0}

A={r={(1a,15,12),(14,15.22)} }|
s)
] M
(ar7e 2]

Object diagram: No.

2

Content

« Recall: Associations
W- Overview & Plan

o From Class Diagrams to Signatures

L Whatit Things are Missing?

« Association Semantics

W. Links in System States
(e Associations and OCL

p. “Diamonds”
[

« Back to the Main Track

(Temporarily) Extend Signature

So, What Do We (Have to) Cover?

An association has

« aname,

« areading direction,and
* at least two ends.

Each end has

« asetof properties,
such as unique, ordered, etc.

« aqualiier, (ot i G|
* avisi 3

« anavigabilty,

+ an ownership,

« and possibly a diamond.

Wanted: places in the signature
to represent the information from the picture.

Temporarily (Lecture 7 — 9) Extended Signature

Definition. An i
isaquadruple 7 = (7, %, V, atr) where

Signature (with

« each elementof V' is
o eithera basic type attribute (u : T, €, expro, Po) with T € 7

+ oran association of the form @izt ewel
{r: (roler: C1,m, Pr 1,01, 01),
)umaw_f.%vr\ F{l‘\
e (rolen : Cus s Py s iy 0n) lomed

(ends ith multipliiy . propertis P, visbilty .. navigabilty v, ownership o, 1 < i <)

o atr € — 206V 1T TE7) maps classes to basic type () attributes.

In other words: M= Mo ,}\)
= 0.
+ only basic type attrbutes “belong” to. class (may appearin afr(C). 1= %)

« associations are not “owned” by a class (not in any atr(C')), but “live on their own'’.

2230
T4
Association Example
—c T
(e} *
0.5
Signature:
7= ({14, TCDS, §<n bty v R0,
radni Dy, {ued 2,0,
Lerlior baiud, =%, 159,
(g,
Db 35
1034

Associations in Class Diagrams

What If Things Are Missing?

Most components of associations or association end may be omitted.
For instance (OMG, 2011b, 17), Section 6.4.2, proposes the following rules:

 Name: Use
A(Cr)=r e (Cn)
if the name is missing

Example:

Ao
7\,7‘@7 for 7ﬁv‘b7

« Reading Direction: no default
 Role Name: use the class name at that end in lower-case letters

Example:

R B e

Other convention: (used e.g by modelling tool Rhapsody)

o]

From Association Lines to Extended Signatures

Cy

(r: (roley : Cu, 1, Py, &1,1, 01)
maps to

(rolen : Cn, fin, Poy&ns Vns 0n))
— (/\\I{\
" role; |

[
r——n
|

Tl

What If Things Are Missing?

o Multiplicity: 1
In my opinion, it’s safer to assume 0..1 or * (for 0..x)

if there are no fixed, written, agreed conventions (‘expect the worst”).
o Properties: 0 (i covee: fumwize])
« Visibility: public
* Na

ability and Ownersl

: not so easy. (OMG, 2011b, 43)

“Various options may be chosen for showing navigation arrows on a diagram.
In practice, it s often convenient to suppress some of the arrows and crosses Dﬂxu
and just show exceptional situations: (Cr—T
Nt . . phs
« Show all arrows and x 5: Navigation and its absence are made completely explicit. (se.
« Suppress all arrows and x s: No inference can be drawn about navigation. Ce—7
Thisssimir to any situation in which information i suppressed fiom a vew. " g
« Suppress arrows for associations with navigability in both directions,
and show arrows only for associations with one-way navigabiliy.
In this case, the two-way navigability cannot be distinguished from situations
where there is no navigation at all: however, the latter case occurs rarely in practice.”

123

Wait, If Omitting Thing.

o .is causing so much trouble (e.g. leading to misunderstanding),
why does the standard say “In practice, it is often convenient.

Isita good idea to trade for precisi igui

It depends.

« Convenience as such is a le

imate goal

« In UML-As-Sketch mode, precision “doesn’t matter’,
so convenience (for witer) can even be a primary goal.

« In UML-As-Blueprint mode, precision is the primary goal.
And misunderstandings are in most cases annoying.
But: (even in UML-As-Blueprint mode)

If all associations in your model have multiplicity =,
then its probably a good idea not to write all these .

So: tell the reader about your convention and leave out the *'s.

Links in System States

Associations in General

Recall: We consider associ

jons of the following form:

{r =« (rolex : Cy,p, Pr, &1, 11, 01),

<y {rolen : Cn, pin, Pay €,y Vi 0n))
Only these parts are relevant for extended system states:

P . H ley : Cr,_ P, _, _,
Associations: Semantics (r: (roler: C1,_, Py

e (role, :

(recall: we assume P; = P, = {unique}).

The UML standard thinks'of associations as n-ary relations
which “live on their own” in a system state.

Thatis, links (= associ

n instances)
« do not belong (in general) to certain objects (in contrast to pointers, e.g.)
o are “first-class citizens” next to objects,

« are (in general) not directed (in contrast to pointers).

I (= {rolex = Cr, o P o)

rolen : Gy P,y)

Only for the course of lecturedfs / 9 we change the definition of system states:

Definition. Let 2 be a structure of the (extended) signature
S =(T,%,V, air).

Asystem state of % wrt. is a pair (o, \) consisting of

h assoc

ouly bast Hype

+ atype-consistent mapping (as before) \ atrbedks hare.

0 D(E) » (atr(€) » D(T)),

» amapping A which maps each association
(r: (roles : C1),..., (rolen : Cn)) € V toarelation

A(r) € 2(C1) x -+ x 2(Cn)

. a set of type-consistent n-tuples of identities).

13534 15734
Association / Link Example
Signature: Associations and OCL
= (), TATBY, fuwiket,
v <ach 0%+, Sumimd, x, 05,
Las2, tesy =, Qe —, 03,
CbiB, 0, fuged, >, 05 f,
LAR fus, 200, 8003)
System state: m funl eDA)xD@) ¥ DCB)
= tns lom _
240 fwn e, defrod MNWMWW‘
Jex, 38,
Yz R (11, %2, 55) o~
3 B3 E%rwtww
PN
759, o (ty35,%) 3
a0 wg (142)
1634

18734

OCL and Associations: Syntax

troduced in Lecture 3, interesting part:

Recall: OCL syntax a:

eapri=... [ri(epry) 70 571D 71+ Doy € atr(C)
| raleapry) 7 — Set(rp) 721 D. € atr(C)
Now becomes
eapr = ... | role(eapr,) 7o —Tp p=0.lorp=1.1
| role(eapry) : ¢ — Set(rp) otherwise
if there s
(r oo {role s Dypty gy)y (role’ : Coy o),) € Veor
(reeo. (role’ s Coy_y_oy Yoo (role: Doty o,),...) €V, role # role'.

ion name as such does not occur in OCL syntax, role names do.
Assocation name
o capr has to denote an object of a class which “participates” in the association.

1954

OCL and Associations Semantics: Example

Irote(espr)l(0:), 8) 1= ﬁ ”H._.ﬁhhcii and L(role)(u1,\) = {u}

Irote(espr)l(0:), 8) 1= ﬁ:&&?:: Jifur € dom(L(role)(u, A) = {(u1, .., un)

. otherwise: EA(r) | u€ fur,... un}}Li

4.1 3

(A
-> = {(1s,25,3s),
Exists(s | 5.12 = s.3) (15.35,45),
(5s,1s,1s)}

workgroup

TrFEN(EA,8) <4

TC523(G1), fsh1s3)-
o83 =1s > o
Hﬁksimﬁi. 85

w1
e bl AT AERS (rets)
NAB? 2= § (ss) V2= Ll (s
v v = fosid
s

22

OCL and Associations: Semantics

Recall:
Assume eapr, : ¢ for some C' € . Set u := I[eapry)(a, 8) € 2(Tc)
_ [u .ifu € dom(o)and o(u)(r) = {u}
* Tir(emril @)= AF . otherwise
_ Jotw)(ra) .ifu € dom(o)
© Ilra(ezpry)l(e,8) := AF e
Now needed:

I[role(eapry)]((o, 1), 8)

« We cannot simply write o (u) (rolc).
Recall: role is (for the moment) not an attribute of object « (not in atr(C')).

« What we have is A(r) (with association name r, not with role name ol

But it yields a set of n-tuples, of which some relate u and some instances of 1.

n of the D in the tuples constituting the value of r-

o role denotes the posi

Associations: The Rest

2073

234

OCL and Associations

Semantics Cont’d

Assume eapr, : 7c forsome C' € €. Setuy == I[eapr (0, N), 8) € (T,

\W
w ,ifur € dom(o) and L(role) (u1, \) = {u}
L, otherwise

o Ilrole(eapr))]((0, 1), 8) := ﬁ

o Ifrole(ezpr,)]((c, \), B) := ﬁ?&a?,,yv .if us € dom(o)

. otherwise
et~ it
f
where e T cheprand
L)) =(((m,
if - T T~ -
(17 (rolex + _y oy oy o (r0len oy o2}, role = roles?

Given a set of n-tuples A,
A | i denotes the element-wise proje

n onto the i-th component.
21

The Rest

Recapitulation: Consider the following association:

(r+ (rolex Cuypur, Pry€1,1,01),s . (r0len : oy finy P €ny s 0n)

o Association name r and role names / types
role; / C; induce extended system states (o, \).

o Multi

ty uis considered in OCL syntax.

« Visibility ¢ / Navigability v: well-typedness (in a minute).

Now the rest:
 Multiplicity /.: we propose to view them as constraints.

« Prope

s P:: even more typing.
= Ownership o: getting closer to pointers/references.

« Diamonds: exercise.

24734

Navigability

Navigability is treated similar to visibility:
Using names of non-navigable association ends (1 =) are forbidden.

Example: Given

[
the following OCL ion is not well-typed wrt.
context D inv : role.x > 0
et e 2t
The standard says: navigation is.
* '~ .possible * '’ ..not possible o > efficient
L)
So: In general, UML associati different from pointers / ref general!
But: Pointers / ref faithfully be modelled by UML
Properties
We don't want to cover association properties in detail,
only some observations (assume binary associations):
Property n Semantical Effect

unique one object has at most one 7-link to a single

wese other object current setting

bag ‘one object may have multiple 7-links to asin- | have A(r) yield multi-

gle other object
a sequence of object () yield se-
ordered, " .
N ibly including duplicats
sequence (possibly including duplicates) quences

Property OCL Typing of expression role(expr)
unique Tp — Set(Te)
bag Ty, — Bag(Tc)
ordered, sequence To — Seq(Tc)

For subsets, redefines, union, etc. see (2, 127),

28/

Multiplicities as Constraints

Recall: Multi

where N; < Nijiforl <i <2k Ni

Define uSe, (role) ==

context C'inv : (N < role ->size() <

foreach (r: ..., (role : D,pt,_,_,_,_)

{ree (role’ s Cy o yy)y (role : Doty),) €V,
p# 0.1 #1.1,and

with role # role’,
pbe(role) := context C'inv : not(ocllsUndefined(role))
=11

Note:

ons with n > 2, there is redundancy.

in n-ary associ

Ownership

Intuitively it says:
Association r is not a “thing on its own” (i.e. provided by \),

(That s, it's stored inside C' object and provided by o).

0..1or 1..1, then the picture above

very close to concepts of

pointers/references.
Actually, ownership is seldom seen in UML diagrams. Agai

target platform is clear, one may

well live without (cf. (OMG, 2011b, 42) for more details).

Not clear to me:

Multiplicities as Constraints Example

1 (role) = context Cinv
(N1 < role ->size() < Na) or ... or (Nag_1 < role ->size() < Nag)

CD:

4,17

roles

Back to the Main Track

27

30/

Back to the main track:

Recall: on some eat
associations in “full beauty”.

r slides we said, the extension of the signature is only to study

For the remainder of the course, we should look for something simpler...

Proposal:

o from now on, we only use associations of the form

U] e}

)

« Form (i) introduces role : Co,1. and form (i) introduces role : C.in V.

« Inboth cases, role € atr(C).

 We drop A and go back to our nice o with o (u) (role) C (D).

References

3l

OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.

OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.

3473

Tell Them What You've Told Them. ..

From class diagrams with (general) associ
we obtain extended signatures. .~

inks (instances of associations) “live on the
the X in extended system states (7, \).

OCL considers role names,
the ics is (more or less) strai d,

The Rest:
« navigability i treated ke visibilty, -
« view multiplicities as shorthand for constraints, &

« properties, ownership,

jamonds': exist /

Back to the main track:

For simplicity, lets restrict the following discussion to Co,g and C',
as bef viewed ati

32

References

3334

