Content

@ Actions

Lo wansformer.

send message
o create/destroy: later

Software Design, Modelling and Analysis in UML

. 7 C a
Lecture 12: Core State Machines IT Labelled Transition System Transformer
 Transitions of UML State Machines
o discard event,
2016-12-13 « dispatch event,
 continue RTC,
 environment interaction,
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal « error condition.
n Albert-Ludwigs-Universitét Freiburg, Germany H Example Revisited .
Un : 3m
Transformer Observations A Simple Action Language
« In the following, we assume that In the following we use
Def n. « each application of a transformer ¢ :
& N Acty = {skip}
Let B7, the set of system configurations over some ., %, Eth. « to some system configuration (c- ¢)
We calla relation o forobjectu, U {update(expry, v, expry) | expry, expry € Brpr v € atr}
" mmﬁ&‘u (B m:;vx (22 x Bth) is associated with a set of observations
U {send(B(eapr,. ... crpr,). expr g, | expr, eapr gy, € Brpry E € £}

9(2(8) U {x+})x 2(€)
a (system configuration) transformer. Obsi[us](0,¢) € 2 .
An observation U {create(C, eapr,v) | C € €, expr € Expr v eV}

(tte, tast) € Obsy[uz](0,€)
U {destroy(ezpr) | expr € Expr .}

Example:
o tual(o,e) €S2 x Bthis represents the information that,
wAT R = X) as a “side effect” of object u,. executing ¢ in system configuration (o, = and OCL expressions over . (with partial interpretation) as Ezpr ...
o the set (!) of the system configurations the event u, has been sent to ;. :
hich It i bject u. L N
© which may resu't from object u. Special cases: creation (') / destruction (+).

o executing transformer .

towiplua](.) = {(0,)}

tereate[tz](0, €) : add a previously non-alive object to o

o o
o

4/32 g

Transformer: Skip Transformer: Update pean Update Transformer Example [d
(v = sgscar)
abstract syntax concrete syntax abstract syntax Concrete syntax
skip skip iV i e

intuitive semantics

Update attribute v in the object denoted b) to the value
do nothing o ’ g =

denoted by capr.
well-typedness well-typedness
copry: Teand v
semantics e i o = L3 (e u)
tasplta] (0,€) = {(0v€ semantics \I\lﬂ - '
cbservables sltel(o:) = (02} bad sl = (,5) ey oty T Tkt ot)
€ . =

Obssplus)(0,6) = 0 &w b T where of = oftk s o(u) s Ifeaprol(o, ug)]] with e vale "

(error) conditions oer St o R M 73 ()
w=dlemnlo) et v = (o) =Tore T o113 (s Sl |

observables .)
ObSugante(eapr, weapry 1] = 0 = e e
(error) conditions
Not defined if I ezpr,] (7. u,) or I[eapr) (o, us) not defined
; ¥ o~ P
[SIRTTAN

B 2534 3 i 26134 przn

T2 g 8/32

Y32

Transformer: Send Send Transformer Example Sequential Composition of Transformers

Loz n'T0)
Mo)
abstract syntax concrete syntax - /nVF(z+1)
send(E(eapr., ..., expr,,), expr, ey T E (et o, opis)
intuitive semantics

Object u, : C sends event E to object expr ;.

« Sequential composition ¢; o ¢, of transformers ¢; and ¢, is canonically defined as
v

. create a fresh signal

zm__.évmn_“wm:nm fill in its attributes, and place it in the ether. frent(bepramtE(caprssscsproemmra 2] (0 €) 3 (0, €") i% (t2 0 t1)[ug](0,€) = ;T:::g«m\d
Ee&atr(B)={v:Ty....,v: Ty Yeapr, s T 1 < i <mi o' =0 U{urs {vi s di |1 <0 < nhki s = Ieaprag](o,ur) € dom(o); with observation T
ewpray : Tp.C,D €€ \ & o d; = I[expr;l(o,u),1 < i < n;u.€ 7(E)afresh identity;
umam:znmm_— P obey visibility and r inC — - = ObS (1,00,) [2](0,€) = Obsy, [u,](0,€) U Obsy, [u,](t1 (0, €)).
L ——y R = Castunn) e
@ ifo' =g U{u (v di [1<i<n}) & =e® (uaw up) o: : 2 o’ Clear: not defined if one the two intermediate “micro steps” is not defined.
if tast = I[expr g] (0,) € dom(@); di = I[ezpry](0, ug) for g TCH n3(0) = cunle) %5

1<i<m

4 TCexs1dou)=6

&

ity i, e dom(a).
andwhere (,) = () i ¢ dom(o).§ Sopn, b 7 7o / (25 [=F]
observables 7 7 £ e A !
Obsnalue] = (e, 1)} ; : 4
(error) conditions

I[eapr] (e, u,) not defined for any eapr € {expr g, eapry, - ., capr,}

10/32

3

123

Transformers And Denotational Semantics

Observation: our transformers are in principle the denotational semantics of the
actions/action sequences. The trivial case, to be precise.

] . o/l (op) et
Note: with the previous examples, we can capture @lf@
« empty statements, skips, Lexpd /ot w

« assignments, D Lecepd ym
« conditionals (by normalisation and auxiliary variables),

 create/destroy (later), @ (5 L lope) ot (!

but not possibly diverging loops. G
D-Lepd/act e
Our (Simple) Approach: if the action language is, e.g. Java, Tt epl)

then (syntactically) forbid loops and calls of recursive functions.
Other Approach: use full blown denotational semantics.

No show-stopper, because loops in the action annotation can be converted into
transition cycles in the state machine.

13/32

Transition Relation, Computation

Def n. Let A be a set of labels and S a (not necessarily fi
of states. We call
S CSxAxS

a (labelled) transition relation.

Let Sy C S be a set of al states. A (finite or infinite) sequence

& -
S0 2 51— 5p ...
S ey hs

>
with s; € 5, a; € Ais called computation e rebee.
of the labelled transition system Aw, A, |%,\mov if and only if
R Dt b

on: sg € Sp
e consecution: (s;, a;, si11) €— fori € No.

16/32

Course Map

A
F .
S = (TN fatr), SM

Sl

GEeF)
/. consi, Sndi))ien

ol (5, c1)e e = (¢

Active vs. Passive Classes/Objects

Note: From now on, for simplicity, assume that all classes are active.

WEell later briefly discuss the Rhapsody framework which proposes a way how to
integrate non-active objects.

Note: The following RTC “algorithm” follows Harel and Gery (1997) (i.e. the one
realised by the Rhapsody code generation) if the standard is ambiguous or leaves
choices.

14/32

17n

Transition Relation

15/
From Core State Machines to LTS
n. Let % = (5, %o, Vo, atro, &) be a signature with signals (all classes in %,
active), 7 a structure of .7, and (Eth, ready, &, &, [-]) an ether over .%; and %.
Assume there is one core state machine M per class C € €.
enr(stele
We say, the state Em.‘&aﬁa;nm the following labelled transition relation on states
S = (£2 x Eth) U {#} with labels A := 27(€) x 2(7(€) U {x+D)x9(€) x 5(%):
RO o 5 !
(cons, Snd), T 7 o
R e i s sy oy e
p z L of
if and only if 25 y»hme,?
(i) an event with destination u s discarded, oc
an event is dispatched to u, i.e. stable object processes an event, or
run-to-completion processing by u continues,
. object u is not stable and continues to process an event, ot
(i) the environment interacts with object u, o«
s Emrs #
if and only if
i (v) an error condition occurs during consumption of cons, or
2 s = # and cons = 0.
“ 18/

(i) Discarding An Event

(i) Discarding An Event

(@,6) ?a:.%;& (@€ (@6 ?3..,,.0:& @)

= an E-event (instance of signal E) is ready in < for object u of a class %, ie. if

adifion o mﬂwv w € dom(0) N Z(C) AJup € D(E) : ur € ready(e, u)

 wuis stable and in state machine state s, i.e. o (u)(stable) = 1and o'(u)(st) = s,
« but there is no corresponding transition enabled (all itions incident with current state of

u either have other triggers or the guard is not satisfied)

(s, F, eapr, act,s') €= (SMc) : F # EV I[eapr](o,u) =0
and and
andilios o (s s u « in the system configuration, stability may change, u: goes away, i.e.

o' = olu.stable b\ {up — o(ur)}

where b = 0 if and only if there is a transition with trigger *_" enabled for in (6% <%).

o the event up is removed from the ether,

& =eSug,

- e consumption of u is observed, i.e.

o cons = {ug}, Snd =0. o

(ii) Dispatch Example: Dispatch

(cons,Snd) s s -l>0

(0,0) L2250, (o1 1y SMc: - oy Cles e my E

Hfz =
o uedom(o)NZ(C)A3up € Z(E) : up € ready(e, u)
« wis stable and in state machine state s, ie. o (u)(stable) = 1 and o (u)(st) = s,
PR —
) v
3(s, F, eapr, act, s') € (SMc) : F = E A expr](3,u) = 1 y=2 (fue3, @) S qq\\«
where 5 = ofu.params ; - ug]. ¢g. (- Elrmser®) 5o N Tt
stable = 0

and

o (o',¢") results from applying t,.: to (o, £) and removing u from the ether

(0",€') € tact[u](5,6 © ug), reore ug
" . —
o = (0"[u.st > s’ u.stable — b,u.params g > 0)] 9 ¢6)\ fup)

where b depends (see ”
« Consumption of u; and the side effects of the action are observed, o u € dom(c)N 2(C)

e
ug € D(E)ug & ready(e,u)’

cons = {ug}, Snd = Obs,,,[u](G,c© ug).

21 ¥ 2un

Example: Discard
SMc:

o o
r=1:=0y=2 \QF{V oC o
st=s1 < = timoy=2 |
stable = 1 S
stable =1
I8
leg)

« u € dom(o)N 2(C)
up € 2(E), ug € ready(e, u) o o = olu.stable —-b] \ {ug ~ o(ug)}
o V(s Fempr,act,s') €= (SMc): o ' —coup
F#EVIeapr](o,u) =0, o cons = {ug}, Snd=0

v,\

20/32

(iii) Continue Run-to-Completion

(0,6) LD,y (51 oty

« thereis an unstable object u of a class @ ie.

w € dom(c) N Z(C) A o (u)(stable) = 0

)(st).ie.

o thereis atran:

ion without trigger enabled from the current state s =
I(s,—, eapr, act,s') €= (SMc) : I[eapr](o,u) = 1

and

o (0,¢') results from applying tuc: to (0,),
(0",¢) € taalu)(0.8), o' = " [u.st > &', w.stable > b]
where b depends as before
= Only the side effects of the action are observed, ie.

cons =0, Snd = Obse,,,[u](o,).

e 23/

Example: Continue

SMer -

r=2:=0y=2
:u:

stable = 0

[¢>0)/z=a—Lin!J

<

* uedom(o) N 2(C)

up € D(E), ug € ready(e,u)

(v) Error Conditions

24/n

(cons,Snd)

§————

“y

o I[expr] is not defined for o and u, or

o tqct[u] is not defined for (,),
and
o cons = {),and Snd = 0.

Examples:
P Ele/01/ 2t

Eltrue]/acy

) e

(=)
PR

() —#

272

(iv) Environment Interaction

Assume that a set &,,,, C & is designated as environment events and a set of
attributes V., C V is designated as input attributes.

Then
(@) (cons, Snd) @)

if either () W dabiontel (abe

 anenvironment event £ € &,

is spontaneously sent to an alive object u € dom(c), i.e.

o' =oU{up = {vimr di | 1<i<n)f, & =c® (uup)

where ui ¢ dom(o) and atr(E) = {v; n}e
» Sending of the event s observed, i.e. cons = 0, Snd = {ug,)}

or

« Values of input attributes change freely in alive objects, ie:

Vv eVVuedom(o): o

)(v) # o(u)(v) = v € Venu.

) = dom()

and no objects appear or disappear, .. dom
: ed=e

25/n

Example: Error Condition

[r>0)/z=a-1

SMe: - Gl >0z =y

Q.
e
&l
* u € dom(o) N Z(C) o ou)(stable) = 1, o(u)(st) = 5.
up € P(E), up € ready(s, u) o o' = olustable — b] \ {ug — o(ug)}
o V(s Fy eapr, act,s') € (SMc): o & — e up
5 12 BN ks [6n) =0 o cons = {up}, Snd=0 o

Example Revisited

Example: Environment

SMc: -

[o>0)/a =2~ LinlJ

L2=0,y
st=3s
stable = 1

=2

 u e dom(e) N 2(C)
up € Z(E),up € ready(e, u)

o Y (s, F, expr, act, s') € (SMc) :
F # EV I[eapr](o,u) = 0

.

.

o(u)(stable) = 1,0(u)(st) = s,
o' = ofu.stable — 0] \ {ug — o(up)}

&=coup

cons = {u

Snd =0

lc:C 5p: D
Ne || @ | n | st] stable | p | st | stable < rule
0 |27 [s]| 1 lo[si | 1 (3r,10).(25. 1c)

263

29/32

Tell Them What You've Told Them. .. References

« State Machines induce a labelled transition system. w..%%.wac Mm_n Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer,
© There are five kinds of transitions in the LTS: ’ N .
OMG (2011a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report
« discard: no matching state machine edge enabled, formal/2011-08-05.
may change stability.
« dispatch: a matching state machine edge is taken,
€. actions are executed (according to transformers),
« continue: a state machine edge without signal-trigger
is enabled, and is taken,
« environment interaction: dedicated environment signals
are injected into the event pool,

) OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report
References formal/2011-08-06.

« error condition: a designated error state is assumed,
maybe due to undefined action transformers.

For now, we assume that all classes are active,
thus steps of objects may interleave.

3032 313 g 32n

