17 -2017-01-17 - main -

17 -2017-01-17 - Splan -

Software Design, Modelling and Analysis in UML

Lecture 17: Live Sequence Charts |

2017-01-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

The Plan

e Thu, 19. 1. Live Sequence Charts |
Firstly: State-Machines Rest, Code Generation

e Tue, 24. 1. Live Sequence Charts I
e Thu, 26. 1. Live Sequence Charts llI

o Tue, 31. 1. Tutorial 7

[
0 E==Q

e Thu, 2.2.:Model Based/Driven SW Engineering
e Mon, 6. 2. Inheritance

e Tue, 7.2.:Meta-Modelling + Questions

February, 17th: The Exam.

2/34

17 -2017-01-17 - Scontent -

-17 - 2017-01+17 - main -

Content

o (Hierarchical) State Machines

o Active vs. Passive Objects

o SL\,yfv\/b o Methods / Behavioural Features
O(Lscﬁpv)w’mx\& e Code Generation
b{ belia i ows o Discussion

o Reflective Descriptions of Behaviour
AN

o Interactions
o A Brief History of Sequence Diagrams

o Live Sequence Charts

o Abstract Syntax
o Well-Formedness

Hierarchical State Machines: Retrospective

3/34

4/34

Hierarchical State Machines

lersyn -

17 -2017-01-17 - Shi

17 - 2017-01-17 - main -

UML distinguishes the following kinds of states:

example

simple state

final state
composite state

OR

AND

entry/actT"”
do/ actf

exit/ act§™
Ey/acte,

example
pseudo-state
initial o
(shallow) history @
deep history @
fork/join

junction, choice
entry point

exit point
terminate

submachine state

<
Exercise 4.(i) s @
=5 @
Uy Us

nr. || wbitn | dsp | st |stable|| lock | wis | st | stable € rule

@(LC 0 0 -1 | &5 1 1 0 | &% 1 (u2,e1).(u1, e2)
1 0 - Se 1 1 0 S, 1 ("LQZ) G)
‘S(’C 2 1 -1 S 0 1 o S 4 € (@)
L3 1 -1 S 1 1 0 s, |1 (v2,62))
o 1 -1 sy 1 0 0 5s 0 ¢ Gr)
S 1 - Sy 1 0 0 5, 1 (v ey ETH) (i)
(> Sk 9 -1 $3 1 o 0 53 0 (v, &) Gu')
La Q -1 S 1 0o 0 S 1 € av)
A 1 A s] 1 o | s | 1 Cu.es))
662 1 0 St) o e} S3 0 3)
It 4 o Sy o) 1 o s, 1 3 ')
Sl 0 A s, 1 2 0 s, 1 ¢ G3)
FTEN 6 -1 3, 1 0 o 2 o 13 (i)
‘ I 1 o Sy o] i 0 S 1 ¢ 3
FL2i © ~1 s, / 4 0| v, 1 < (i)

577

5/34

6/34

- 17 - 2017-01-17 - main -

-17 - 2017-01-17 - main -

Exercise 4 (ii)-(v)

- 05 - 2016-12-20 - main -

(ii) Explain the difference between step and RTC-step.
(iii) Is it possible to reach #7?

(iv) Considering the rule for environment interaction,
how does the possible behaviour change?

V) How does the behaviour simulated with Rhapsody
compare to the results from Task (i)?

b

N QW Jwbin :=1
P AR St

Jdd\ WQ
‘MPTY Jwhtn := Q- ¢

(<]

cp! VV(W&ZZ*??

6/7

7734

Active and Passive Objects

8/34

What about non-Active Objects?

17 - 2017-01-17 - Sactpass

Recall:

o Wee still working under the assumption
that all classes in the class diagram (and thus all objects) are active.

o Thatis, each object has its own thread of control and is (if stable)
at any time ready to process an event from the ether.
— steps of active objects can interleave.

But the world doesn't consist of only active objects.

For instance, in the Vending Machine from the exercises
we could wish to have the whole system live in one thread of control.

So we have to address questions like:

o Can we send events to a non-active object?
o And if so, when are these events processed?
e etc.

934

Active and Passive Objects: Nomenclature

17 - 2017-01-17 - Sactpass

Harel and Gery (1997) propose the following (orthogonal!) notions:

o Aclass (and thus the instances of this class) is either active or passive
as defined by the class diagram. (vob chhe.)

o An active object has (in the operating system sense) an own thread:
an own program counter, an own stack, etc.

o A passive object doesnt.

o Aclassis either reactive or non-reactive.

o Areactive class has a (non-trivial) state machine.
o A non-reactive one hasnt.

Which combinations do we (not) understand yet?

active | passive
reactive V4 g
non-reactive () (v)

10734

Passive and Reactive / Rhapsody Style: Example

- 17 - 2017-01-17 - Sactpass -

e~ —~ — — —

_—
Ve mlo1
[o =&l e] HIH

—_ = —

n!F;m!G
SMe)

sMey (a5 N T e T e]

m

l E:(ul,El)
‘ﬂ] C] }—»‘ug C2| |u3D| ‘EZE‘
st=g, st=s,
SBULM shilles g 5“6& 7

S/
If € was active, too: o 11 , (\43/.(,> @ gs) /j 14 .
@ 1 Y 530
EF0) (90 Tl (Fe) [/ v
DB]

0

> A
\,-5(54'0/‘)‘/"(2
S2,

Wanted (C5’s in activity group with an D): b
g Ge 7
oy 51, o0, o) o] o)
7 3 Uy V3 vy

Passive Reactive / Rhapsody Style

o Ineach class, add (implicit) link 7tsAct and use it to make each object u
know the active object u, which is responsible for dispatching events to w.

If w is an instance of an active class, then u, = u.
o Equip all signals with (implicit) association dest and use it to point to the destination object.
For each signal F', have a version F with an association dest : Cp,1, C' € € (no inheritance yet).

itsAct
[11] m] 0.1
n 1
C C D itsAct
! 0.1 ? itsAct ?
1 1 1
dest dest dest
((signat)) ((signal)) ((signal))
F‘c1 F’C2 FD

s
S

11734

12/34

Passive Reactive / Rhapsody Style

o In each class, add (implicit) link itsAct and use it to make each object u
know the active object u, which is responsible for dispatching events to w.

If u is an instance of an active class, then u, = u.
o Equip all signals with (implicit) association dest and use it to point to the destination object.
For each signal F', have a version F with an association dest : C,1, C' € € (no inheritance yet).

itsAct o
[l 4 N
n \)
u 2 Cy ug : Cy - u,: D || itsAct
I itsAct
.0 (. \
4 7 I
4 |
L v
(-l 7LC - £ (Ug)

Sending an event:

e n!Finuy : Cq becomes:

o Create an instance u. of Fco, and set u.'s dest tcy
ug := o(uy)(n).

o Sendtoug := o(o(u1)(n))(itsAct),
ie,e' =e® (U, we).

£
&

12/34

Passive Reactive / Rhapsody Style

o Ineach class, add (implicit) link 7tsAct and use it to make each object u
know the active object u, which is responsible for dispatching events to w.

If w is an instance of an active class, then u, = u.
o Equip all signals with (implicit) association dest and use it to point to the destination object.
For each signal F', have a version F with an association dest : Cp,1, C' € € (no inheritance yet).

itsAct

[

uy : C

[itsAct

ug : Co - ug D
- ’LtSACt -

Sending an event: Dispatching an event:

o Observation: the ether only has events for active ob-
jects.

e n!Finu; : C1 becomes:
o Create an instance u. of Fc, and set u.’s dest to

17 - 2017-01-17 - Sactpass -

uq := o(uy)(n).
e Sendtou, := o(o(u1)(n))(itsAct),
ie, e’ =¢e® (ua,ue).

e Say u. is ready in the ether for u,.

o Then u, asks o(u.)(dest) = uq to process u. —
and waits until completion of corresponding RTC.

e wug may in particular discard event.

12/34

- 17 - 2017-01-17 - main -

And What About Methods?

And What About Methods?

ethods -

17 -2017-01-17 - Sm

o In the current setting, the (local) state of objects is only modified
by actions of transitions, which we abstract to transformers.

¢ In general, there are also methods.

e UML follows an approach to separate

o theinterface declaration from
o the implementation.

In C++-lingo: distinguish declaration and definition of method.

o In UML, the former is called behavioural

C

feature and can (roughly) be

. & f(Tia,...,Tin) T P
o acallinterface f(T1,,...,Th,) : T1 & F(Ton,...,Tomy) : T2 Ps

o asignal name E (signal)) E

Note: The signal list can be seen as redundant (can be looked up in the state machine) of the class. But:

certainly useful for documentation (or sanity check).

13/34

14/34

Behavioural Features

¢

17 - 2017-01-17 - Smethods -

& f(Tia,-.

& F(Tay, ..

ST T Py
.,T27n2):T2 P2

(signal)) E

Semantics:

e The implementation of a behavioural feature can be provided by:

An operation.
In our setting, we simply assume a transformer like T's.

Itis then, e.g. clear how to admit method calls as actions on transitions: function composition of transformers (clear

but tedious: non-termination).
In a setting with Java as action language: operation is a method body.
The class’ state-machine (“triggered operation”). OV
e Calling F' with no parameters for a stable instance of C'

creates an auxiliary event F' and dispatches it (bypassing the ether).
® Transition actions may fill in the return value.

® On completion of the RTC step, the call returns.
@ Fora non-stable instance, the caller blocks until stability is reached again.

Behavioural Features: Visibility and Properties

ethods -

17 - S

-17-2017-0

C

&S f(Ma,....,Tin) Ty P
& F(Ton, ..., Tomy) : T2 P2
{(signal)) E

o Visibility:

Extend typing rules to sequences of actions such that
a well-typed action sequence only calls visible methods.

o Useful properties:

concurrency

® concurrent — is thread safe
® guarded - some mechanism ensures/should ensure mutual exclusion
® sequential —is not thread safe, users have to ensure mutual exclusion

isQuery — doesn't modify the state space (thus thread safe)

15734

16734

A Closer Look to Rhapsody Code Generation

17/34

= ;
U/, %
@E D <P /’% L%éwﬁ [Wﬁf exe

18/34

Tell Them What You’ve Told Them. . .

e Rhapsody also supports non-active objects — their instances
share an event pool with an active object.

o Behavioural Features: exist.

e Semantic Variation Points are legion — but manageable, e.g. by
appropriate modelling guidelines (stick to “the beaten track”).

e Interactions can be used for reflective descriptions of behaviour,
ie.
o describe what behaviour is (un)desired,
without (yet) defining how to realise it.

e One visual formalism for interactions: Live Sequence Charts

o partially ordered locations,
o instantaneous and aynchronous messages,
o conditions and local invariants

Later: pre-charts.

32/34

References

g
S

33/34

References

17 -2017-01-17 - main -

Crane, M. L. and Dingel, J. (2007). UML vs. classical vs. rhapsody statecharts: not all models are created equal.
Software and Systems Modeling, 6(4):415-435.

Damm, W. and Harel, D. (2001). LSCs: Breathing life into Message Sequence Charts. Formal Methods in System
Design, 19(1):45-80.

Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg, O., editor, CAV, volume 1254 of
LNCS, pages 226-231. Springer-Verlag.

Harel, D. and Gery, E. (1997). Executable object modeling with statecharts. IEEE Computer, 30(7):31-42.

Harel, D. and Maoz, S. (2007). Assert and negate revisited: Modal semantics for UML sequence diagrams.
Software and System Modeling (SoSyM). To appear. (Early version in SCESM'06, 2006, pp. 13-20).

Harel, D. and Marelly, R. (2003). Come, Lets Play: Scenario-Based Programming Using LSCs and the Play-Engine.
Springer-Verlag.

Klose, J. (2003). LSCs: A Graphical Formalism for the Specification of Communication Behavior. PhD thesis, Carl von
Ossietzky Universitat Oldenburg.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
OMG (201M1a). Unified modeling language: Infrastructure, version 2.4.1. Technical Report formal/2011-08-05.
OMG (2011b). Unified modeling language: Superstructure, version 2.4.1. Technical Report formal/2011-08-06.
Storrle, H. (2003). Assert, negate and refinement in UML-2 interactions. InJirjens, J., Rumpe, B., France, R., and

Fernandez, E. B., editors, CSDUML 2003, number TUM-10323. Technische Universitat Minchen. 3
4734

