How To Use Automata for Solving Mathematical Problems

Johannes Kalmbach

University of Freiburg

johannes.kalmbach@gmail.com

January 26, 2018

• Talk about MATHEMATICS

- How to use automata to prove mathematical theorems
- Especially relevant if "pure" mathematical methods were not sufficient

Binary squares

• With natural numbers, "." generally denotes multiplication, so $n^2 := n \cdot n$ gives us

$$5^2 = 25$$

 With formal languages, "·" generally denotes concatenation, so w² := w ⋅ w gives us

$$1011^2 = 1011 \ 1011$$

Definition

Set of *binary squares* B:= all possible results of such square computations (only canonical binary representations)

$$\mathcal{B} := \{ww | w \in \{1\} \cdot \{0,1\}^*\} \cup \{\epsilon\}$$

• Note: 0 is a binary square (canonical binary representation is the empty string ϵ with $\epsilon^2 = \epsilon$)

Theorem

Every natural number n > 686 is the sum of four binary squares.

- $\bullet\,$ There are 56 numbers \leq 686 for which this does not hold, e.g. 2 and 686
- Original version: Every natural number is them sum of four "ordinary" squares (Joseph-Louis Lagrange, 1736-1813)
- Example:

$$6 = 3 + 3 + 0 + 0 = 11_2 + 11_2 + \epsilon_2 + \epsilon_2$$

The following lemma will help us prove Lagrange's Theorem for Binary Squares:

Lemma (part 1)

Every length-n integer, n odd, $n \ge 13$, is the sum of binary squares as follows: either

- one of length n-1 and one of length n-3, or
- two of length n-1 and one of length n-3, or
- one of length n-1 and two of length n-3, or
- one each of lengths n-1, n-3 and n-5
- two of length n-1 and two of length n-3, or
- two of length n-1, one of length n-3 and one of length n-5

Lemma (part 2)

Every length-n integer, n even, $n \ge 18$ is the sum of binary squares as follows: either:

- two of length n-2 and two of length n-4, or
- three of length n-2 and one of length n-4, or
- one each of lenghts n, n-4 and n-6, or
- two of lengths n 2, one of length n 4, and one of length n 6.

Theorem (repetition)

Every natural number n > 686 is the sum of four binary squares.

- a ∈ N, a ≥ 2¹⁷ has binary representation of length ≥ 18, existence of binary square summands follows from lemma
- For $686 < a < 2^{17}$ find summands by brute-force computation
- "Missing" summands can be set to 0 (which is binary square as seen above)
- Proving the main lemma also proves the theorem.

Solving Mathematical Problems Using Automata

Given: odd-length part of main lemma, three different formulations:

Main Lemma (repetition of part 1)

- Every length-n integer, n odd, n ≥ 13, is the sum of binary squares as follows: [several cases . . .]
- Predicate Logic: $\forall x \in \mathbb{N} : E(x) \lor S(x) \lor \bigvee M_i(x)$
- Sets: $\mathbb{N} = E \cup S \cup \bigcup M_i$

where

- E(x) is true $\Leftrightarrow x \in E \Leftrightarrow x$ has even (non-odd) length in binary representation
- S(x) is true $\Leftrightarrow x \in S \Leftrightarrow x$ is too short to be handled by the lemma (shorter than 13)
- $M_i(x)$ is true $\Leftrightarrow x \in M_i \Leftrightarrow$ the *i*-th case of main lemma applies to x.

Solving Mathematical Problems Using Automata

Main Lemma (part 1, expressed as sets)

$$\mathbb{N}=E\cup S\cup \bigcup M_i$$

Approach:

- find a representation of \mathbb{N} as Kleene closure Σ^* of alphabet Σ , so a bijective mapping $r : \mathbb{N} \to \Sigma^*$ (e.g. canonical binary representation and $\Sigma = \{0, 1\}$)
- If or each of the sets mentioned in (1) construct an automaton that accepts exactly this set, e.g.

$$L_E = \{r(x) \in \mathbb{N} : x \text{ has even length}\}$$

show that (1) holds, so that

$$L_{\mathbb{N}} = L_E \cup L_S \cup \bigcup L_{M_i}$$

(1)

$$L_{\mathbb{N}} = L_E \cup L_S \cup \bigcup L_{M_i}$$

Prerequisites

- We must find an automata model which is powerful enough to express all of the sets mentioned above.
- In our chosen model, the equation above must be decidable.
- True for nondeterministic finite automata (**NFAs**): closed under union and equality is decidable.
- Nondeterministic \Rightarrow able to "guess" summands.

main lemma (part 1)

$$L_{\mathbb{N}} = L_E \cup L_S \cup \bigcup L_{M_i}$$

- Automata for $L_{\mathbb{N}}$, L_E (even lenght) and L_S (shorter than 13) can be constructed easily.
- In the following, construct automaton L_{M_1} for first case of main lemma:

L_{M_1}

A binary number x of odd length $n \ge 13$ is in L_{M_1} iff x is the sum of two binary squares of length n-1 and n-3

L_{M_1}

A binary number x of odd length $n \ge 13$ is in L_{M_1} iff x is the sum of two binary squares of length n-1 and n-3

- Idea: NFA gets x as an input and guesses the summands in a nondeterministic way.
- Make sure that only valid summands can be guessed (binary squares and length constraints)
- Accept x iff valid summands a, b could be guessed.

イロト 人間ト イヨト イヨト

- Problem: Binary squares \mathcal{B} do not form regular language (Pumping lemma, NFAs cannot "remember" words of arbitrary length)
- Idea: Add high and low half of bits simultaneously
- Addition of higher bits depends on carry of lower bits
- Similar idea: Conditional Sum Adder from "TI"
- For this we use a more sophisticated, "folded" representation of binary numbers

Folded Representation of Binary Numbers

Our automaton gets pairs of bits, one of the higher and lower half each:

$$\Sigma = \{ [h, l] \mid h, l \in \{0, 1\} \}$$

The "folding" mechanism can be seen in the following figure (the a_k are bits of an 9-bit integer, leading bit must be 1):

$$\begin{aligned} 1a_7 a_6 a_5 a_4 | a_3 a_2 a_1 a_0 &\to \begin{pmatrix} 1 & & \\ a_7 & a_3 \\ a_6 & a_2 \\ a_5 & a_1 \\ a_4 & a_0 \end{pmatrix} &\to [a_4, a_0][a_5, a_1][a_6, a_2][a_7, a_3][1]_{\zeta} \\ 1 & 1100 & 1001 &\to \begin{pmatrix} 1 & & \\ 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} &\to [0, 1][0, 0][1, 0][1, 1][1]_{\zeta} \end{aligned}$$

Reversed order more logical when adding up numbers.

- highest bit of odd-length number has no "folding partner" \Rightarrow special character called $[1]_{\zeta}$
- Automata will need to know if we are near the end of the addition.
 - Pairs are annoated with letters $\alpha,\beta,\gamma,\delta,\epsilon$
 - ϵ means "last pair in even-length number or second-to-last in odd-length number", other subscripts definied similarly
- This extends our language to

 $\boldsymbol{\Sigma} = \{ [1]_{\zeta} \} \cup (\{ [h, l] \mid h, l \in \{0, 1\}\} \times \{\alpha, \beta, \gamma, \delta, \epsilon\})$

L_{M_1}

A binary number x of odd length $n = 2k + 1 \ge 13$ is in L_{M_1} iff x is the sum of two binary squares of length n - 1 and n - 3

- Basic setup for adding two numbers of length n 1 = 2k and n 3 = 2k 2
- "|" marks the middle of the numbers (rounded down in the odd length case)

3

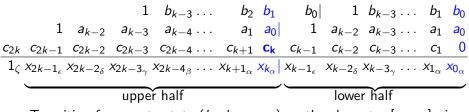
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \bullet Summands are binary squares \rightarrow digits repeat
- First digit of each number must be 1 (definition of length)
- add carry at starting places

Adding with NFAs: Creating the Transition Relation

		1	$b_{k-3}\ldots$	b_2	b_1	b_0	1	$b_{k-3}\ldots$	b_1	<i>b</i> 0
1	a_{k-2}	a_{k-3}	$a_{k-4} \dots$	a_1	a_0	1	a_{k-2}	a _{k-3}	a_1	<i>a</i> 0
$c_{2k} c_{2k-1}$	c_{2k-2}	c_{2k-3}	c_{2k-4}	c_{k+1}	c _k	c_{k-1}	c_{k-2}	<i>c</i> _{<i>k</i>-3}	c_1	0
$1_{\zeta} x_{2k-1_{\epsilon}}$	$x_{2k-2\delta}$	$x_{2k-3\gamma}$	$x_{2k-4_{\beta}}$ · · ·	$x_{k+1_{\alpha}}$	$x_{k_{\alpha}}$	$x_{k-1_{\epsilon}}$	$x_{k-2_{\delta}}$	$x_{k-3_{\gamma}}\ldots$	$x_{1_{\alpha}}$	$x_{0_{\alpha}}$
• Start i	n initia		half 90				lowe	r half		

- Read $[x_k, x_0]_{\alpha}$ as input, "guess" b_0, b_1, a_0
- properties that have to be stored in state:
 - b₀ to be used later
 - b_1 to be used in next step
 - Carries $c_l, c_h (c_1, c_{k+1})$ for next step
 - Upper half carry c_k must be known for the first transition, is property of automaton (two separate automata for the two choices of c_k)
- next step has form (b_0, b_1, c_l, c_h) with $b_0, b_1, c_l, c_h \in \{0, 1\}$ (1 is highest possible carry when adding two binary numbers)



- Transition from q₀ to state (b₀, b₁, c_l, c_h) on the character [x_k, x₀]_α is allowed (nondeterministic) iff for any a₀ ∈ {0,1} all of the following conditions hold:
 - $b_0 + a_0 = c_I x_0$ (seen as bit sequence)

•
$$b_1 + a_0 + c_k = c_h x_k$$

Adding with NFAs

Example Start in initial state q_0 , assume automaton with $c_k = 0$. First input character is $[0, 1]_{\alpha}$.

$$1 \quad b_{k-3} \dots \quad b_{2} \quad b_{1} \quad b_{0} | \quad 1 \quad b_{k-3} \dots \quad b_{1} \quad b_{0} \\ 1 \quad a_{k-2} \quad a_{k-3} \quad a_{k-4} \dots \quad a_{1} \quad a_{0} | \quad 1 \quad a_{k-2} \quad a_{k-3} \dots \quad a_{1} \quad a_{0} \\ c_{2k} \quad c_{2k-1} \quad c_{2k-2} \quad c_{2k-3} \quad c_{2k-4} \dots \quad c_{k+1} \quad \mathbf{0} \quad c_{k-1} \quad c_{k-2} \quad c_{k-3} \dots \quad c_{1} \quad \mathbf{0} \\ 1_{\zeta} \quad x_{2k-1_{\epsilon}} \quad x_{2k-2_{\delta}} \quad x_{2k-3_{\gamma}} \quad x_{2k-4_{\beta}} \dots \quad x_{k+1_{\alpha}} \quad \mathbf{0}_{\alpha} | \quad x_{k-1_{\epsilon}} \quad x_{k-2_{\delta}} \quad x_{k-3_{\gamma}} \dots \quad x_{1_{\alpha}} \quad \mathbf{1}_{\alpha} \\ \hline \mathbf{0} \quad \mathbf{0} \\ 1 \quad \mathbf{0} \quad \mathbf{0$$

3

イロト 人間ト イヨト イヨト

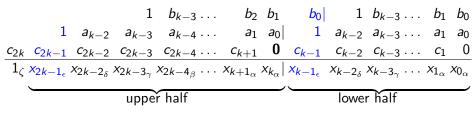
Adding with NFAs

Example Start in initial state q_0 , assume automaton with $c_k = 0$. First input character is $[0, 1]_{\alpha}$.

			L	ן 1	$b_{k-3} \ldots b_2 \ b_1 \ b_0 \ 1 \ b_{k-3} \ldots \ b_1 \ b_0$						
	1	a_{k-}	2 a	k-3	$a_{k-4} \dots a_1 a_0 1 a_{k-2} a_{k-3} \dots a_1 a_0$						
c_{2k}	c_{2k-1}	c_{2k-}	₂ c ₂	k-3	$c_{2k-4} \ldots c_{k+1}$ 0 c_{k-1} c_{k-2} $c_{k-3} \ldots c_1$ 0						
$1_{\zeta} x_{2k-1_{\epsilon}} x_{2k-2_{\delta}} x_{2k-3_{\gamma}} x_{2k-4_{\beta}} \dots x_{k+1_{\alpha}} 0_{\alpha} x_{k-1_{\epsilon}} x_{k-2_{\delta}} x_{k-3_{\gamma}} \dots x_{1_{\alpha}} 1_{\alpha}$											
upper half $\delta(q_0, [0, 1]_{\alpha}) = \{(0, 1, 0, 1), \}$											
<i>b</i> 0	b_1	<i>a</i> 0	c _l	c _h	(1, 0, 0, 0)						
0	0	x	x	x							
0	1	1	0	1	• Similarly for						
1	0	0	0	0	 [0, 0]_α, [1, 0]_α, [1, 1]_α Other subscripts do not occur in q₀ if numbers are long enough 						
1	1	x	x	x							

and correctly folded

Adding with NFAs



- Rules for other states and inputs can be derived in a similar way, e.g.
- When reading [u, v]_ϵ we have to use the b₀ from the state tuple for the lower bits and in the upper half of the bits there is no b.
- We can only choose 1 for a.
- We have to make sure that we get $\mathbf{c}_{\mathbf{k}}$ as a carry for the lower bits.

- Similar techniques are used to construct automata for remaining cases of main lemma (also for even-length numbers)
- The actual verification is done by the *ULTIMATE* framework developed at the chair for software engineering (University of Freiburg)
- Actual verification took less than one minute

- Automata theory can deliver proofs where pure mathematicians did not suceed so far
- especially good for computational proofs (e.g. case distinctions with many cases like in our example)
- Critics: Computer does actual proving.
 - Hard to see and verify if working correctly
 - Hard to get intuition why proof works
- "Mechanical" proof better than no proof?
- Sometimes "elegant" proof is found some time after computational proof

P. Madhusudan, D. Nowotka, A. Rajasekaran, J. Shallit Lagrange's Theorem for Binary Squares ArXiv e-prints https://arxiv.org/abs/1710.04247