How To Use Automata for Solving Mathematical Problems

Johannes Kalmbach
University of Freiburg
johannes.kalmbach@gmail.com

January 26, 2018

Introduction

- Talk about MATHEMATICS
- How to use automata to prove mathematical theorems
- Especially relevant if "pure" mathematical methods were not sufficient

Binary squares

- With natural numbers, "." generally denotes multiplication, so $n^{2}:=n \cdot n$ gives us

$$
5^{2}=25
$$

- With formal languages, "." generally denotes concatenation, so $w^{2}:=w \cdot w$ gives us

$$
1011^{2}=10111011
$$

Definition

Set of binary squares $\mathcal{B}:=$ all possible results of such square computations (only canonical binary representations)

$$
\mathcal{B}:=\left\{w w \mid w \in\{1\} \cdot\{0,1\}^{*}\right\} \cup\{\epsilon\}
$$

- Note: 0 is a binary square (canonical binary representation is the empty string ϵ with $\epsilon^{2}=\epsilon$)

Lagrange's Theorem for Binary Squares

Theorem

Every natural number $n>686$ is the sum of four binary squares.

- There are 56 numbers ≤ 686 for which this does not hold, e.g. 2 and 686
- Original version: Every natural number is them sum of four "ordinary" squares (Joseph-Louis Lagrange, 1736-1813)
- Example:

$$
6=3+3+0+0=11_{2}+11_{2}+\epsilon_{2}+\epsilon_{2}
$$

The Main Lemma

The following lemma will help us prove Lagrange's Theorem for Binary Squares:

Lemma (part 1)

Every length-n integer, n odd, $n \geq 13$, is the sum of binary squares as follows: either

- one of length $n-1$ and one of length $n-3$, or
- two of length $n-1$ and one of length $n-3$, or
- one of length $n-1$ and two of length $n-3$, or
- one each of lengths $n-1, n-3$ and $n-5$
- two of length $n-1$ and two of length $n-3$, or
- two of length $n-1$, one of length $n-3$ and one of length $n-5$

The Main Lemma

Lemma (part 2)

Every length-n integer, n even, $n \geq 18$ is the sum of binary squares as follows: either:

- two of length $n-2$ and two of length $n-4$, or
- three of length $n-2$ and one of length $n-4$, or
- one each of lenghts $n, n-4$ and $n-6$, or
- two of lengths $n-2$, one of length $n-4$, and one of length $n-6$.

Main Lemma

Theorem (repetition)

Every natural number $n>686$ is the sum of four binary squares.

- $a \in \mathbb{N}, a \geq 2^{17}$ has binary representation of length ≥ 18, existence of binary square summands follows from lemma
- For $686<a<2^{17}$ find summands by brute-force computation
- "Missing" summands can be set to 0 (which is binary square as seen above)
- Proving the main lemma also proves the theorem.

Solving Mathematical Problems Using Automata

Given: odd-length part of main lemma, three different formulations:

Main Lemma (repetition of part 1)

- Every length-n integer, n odd, $n \geq 13$, is the sum of binary squares as follows: [several cases ...]
- Predicate Logic: $\forall x \in \mathbb{N}: E(x) \vee S(x) \vee \bigvee M_{i}(x)$
- Sets: $\mathbb{N}=E \cup S \cup \bigcup M_{i}$
where
- $E(x)$ is true $\Leftrightarrow x \in E \Leftrightarrow x$ has even (non-odd) length in binary representation
- $S(x)$ is true $\Leftrightarrow x \in S \Leftrightarrow x$ is too short to be handled by the lemma (shorter than 13)
- $M_{i}(x)$ is true $\Leftrightarrow x \in M_{i} \Leftrightarrow$ the i-th case of main lemma applies to x.

Solving Mathematical Problems Using Automata

Main Lemma (part 1, expressed as sets)

$$
\begin{equation*}
\mathbb{N}=E \cup S \cup \bigcup M_{i} \tag{1}
\end{equation*}
$$

Approach:
(1) find a representation of \mathbb{N} as Kleene closure Σ^{*} of alphabet Σ, so a bijective mapping $r: \mathbb{N} \rightarrow \Sigma^{*}$ (e.g. canonical binary representation and $\Sigma=\{0,1\}$)
(2) for each of the sets mentioned in (1) construct an automaton that accepts exactly this set, e.g.

$$
L_{E}=\{r(x) \in \mathbb{N}: x \text { has even length }\}
$$

(3) show that (1) holds, so that

$$
L_{\mathbb{N}}=L_{E} \cup L_{S} \cup \bigcup L_{M_{i}}
$$

Solving Mathematical Problems Using Automata

$$
L_{\mathbb{N}}=L_{E} \cup L_{S} \cup \bigcup L_{M_{i}}
$$

Prerequisites

- We must find an automata model which is powerful enough to express all of the sets mentioned above.
- In our chosen model, the equation above must be decidable.
- True for nondeterministic finite automata (NFAs): closed under union and equality is decidable.
- Nondeterministic \Rightarrow able to "guess" summands.

Automata for the main lemma

main lemma (part 1)

$$
L_{\mathbb{N}}=L_{E} \cup L_{S} \cup \bigcup L_{M_{i}}
$$

- Automata for $L_{\mathbb{N}}, L_{E}$ (even lenght) and L_{S} (shorter than 13) can be constructed easily.
- In the following, construct automaton $L_{M_{1}}$ for first case of main lemma:

$L_{M_{1}}$

A binary number x of odd length $n \geq 13$ is in $L_{M_{1}}$ iff x is the sum of two binary squares of length $n-1$ and $n-3$

Automaton for $L_{M_{1}}$

$L_{M_{1}}$
A binary number x of odd length $n \geq 13$ is in $L_{M_{1}}$ iff x is the sum of two binary squares of length $n-1$ and $n-3$

- Idea: NFA gets x as an input and guesses the summands in a nondeterministic way.
- Make sure that only valid summands can be guessed (binary squares and length constraints)
- Accept x iff valid summands a, b could be guessed.

	$b_{2 k-3}$	$b_{2 k-4}$	\ldots	b_{k+1}	b_{k}	b_{k-1}	b_{k-2}	b_{k-3}	\ldots	b_{1}	b_{0}
$a_{2 k-1}$	$a_{2 k-2}$	$a_{2 k-3}$	$a_{2 k-4}$	\ldots	a_{k+1}	a_{k}	a_{k-1}	a_{k-2}	a_{k-3}	\ldots	a_{1}

Folded Representation of Binary Numbers

- Problem: Binary squares \mathcal{B} do not form regular language (Pumping lemma, NFAs cannot "remember" words of arbitrary length)
- Idea: Add high and low half of bits simultaneously
- Addition of higher bits depends on carry of lower bits
- Similar idea: Conditional Sum Adder from "TI"
- For this we use a more sophisticated, "folded" representation of binary numbers

Folded Representation of Binary Numbers

Our automaton gets pairs of bits, one of the higher and lower half each:

$$
\Sigma=\{[h, l] \mid h, l \in\{0,1\}\}
$$

The "folding" mechanism can be seen in the following figure (the a_{k} are bits of an 9 -bit integer, leading bit must be 1):

$$
\begin{aligned}
1 a_{7} a_{6} a_{5} a_{4} \mid a_{3} a_{2} a_{1} a_{0} & \rightarrow\left(\begin{array}{cc}
1 & \\
a_{7} & a_{3} \\
a_{6} & a_{2} \\
a_{5} & a_{1} \\
a_{4} & a_{0}
\end{array}\right) \\
& \rightarrow\left[a_{4}, a_{0}\right]\left[a_{5}, a_{1}\right]\left[a_{6}, a_{2}\right]\left[a_{7}, a_{3}\right][1]_{\zeta} \\
111001001 & \rightarrow\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned} \rightarrow[0,1][0,0][1,0][1,1][1]_{\zeta} .
$$

Reversed order more logical when adding up numbers,

Folded Representation of Binary Numbers

- highest bit of odd-length number has no "folding partner" \Rightarrow special character called [1] $]_{\zeta}$
- Automata will need to know if we are near the end of the addition.
- Pairs are annoated with letters $\alpha, \beta, \gamma, \delta, \epsilon$
- ϵ means "last pair in even-length number or second-to-last in odd-length number", other subscripts definied similarly
- This extends our language to

$$
\Sigma=\left\{[1]_{\zeta}\right\} \cup(\{[h, l] \mid h, l \in\{0,1\}\} \times\{\alpha, \beta, \gamma, \delta, \epsilon\})
$$

Adding with NFAs

$L_{M_{1}}$
A binary number x of odd length $n=2 k+1 \geq 13$ is in $L_{M_{1}}$ iff x is the sum of two binary squares of length $n-1$ and $n-3$

- Basic setup for adding two numbers of length $n-1=2 k$ and $n-3=2 k-2$
- "|" marks the middle of the numbers (rounded down in the odd length case)

$$
\left.\begin{array}{rllllllllll}
& b_{2 k-3} & b_{2 k-4} & \ldots & b_{k+1} & b_{k} & b_{k-1} \mid & b_{k-2} & b_{k-3} & \ldots & b_{1}
\end{array} b_{0}\right)
$$

Adding with NFAs

- Summands are binary squares \rightarrow digits repeat
- First digit of each number must be 1 (definition of length)
- add carry at starting places

$$
\begin{aligned}
& 1 \quad b_{k-3} \ldots \quad b_{2} b_{1} \quad b_{0} \mid \quad 1 \quad b_{k-3} \ldots b_{1} b_{0} \\
& 1 \quad a_{k-2} \quad a_{k-3} \quad a_{k-4} \ldots \quad a_{1} \quad a_{0} \left\lvert\, \begin{array}{lllllll}
& a_{k-2} & a_{k-3} \ldots & a_{1} & a_{0}
\end{array}\right. \\
& \begin{array}{lllllllllll}
c_{2 k} & c_{2 k-1} & c_{2 k-2} & c_{2 k-3} & c_{2 k-4} \ldots & c_{k+1} & c_{k} & c_{k-1} & c_{k-2} & c_{k-3} & \ldots
\end{array} c_{1} \quad 0
\end{aligned}
$$

Adding with NFAs: Creating the Transition Relation

- Start in initial state q_{0}
- Read $\left[x_{k}, x_{0}\right]_{\alpha}$ as input, "guess" b_{0}, b_{1}, a_{0}
- properties that have to be stored in state:
- b_{0} to be used later
- b_{1} to be used in next step
- Carries $c_{l}, c_{h}\left(c_{1}, c_{k+1}\right)$ for next step
- Upper half carry c_{k} must be known for the first transition, is property of automaton (two separate automata for the two choices of c_{k})
- next step has form ($b_{0}, b_{1}, c_{l}, c_{h}$) with $b_{0}, b_{1}, c_{l}, c_{h} \in\{0,1\}$ (1 is highest possible carry when adding two binary numbers)

Adding with NFAs

- Transition from q_{0} to state $\left(b_{0}, b_{1}, c_{l}, c_{h}\right)$ on the character $\left[x_{k}, x_{0}\right]_{\alpha}$ is allowed (nondeterministic) iff for any $a_{0} \in\{0,1\}$ all of the following conditions hold:
- $b_{0}+a_{0}=c_{l} x_{0}$ (seen as bit sequence)
- $b_{1}+a_{0}+c_{k}=c_{h} x_{k}$

Adding with NFAs

Example Start in initial state q_{0}, assume automaton with $c_{k}=0$. First input character is $[0,1]_{\alpha}$.

b_{0}	b_{1}	a_{0}	c_{l}	c_{h}
0	0			
0	1			
1	0			
1	1			

- Similarly for
$[0,0]_{\alpha},[1,0]_{\alpha},[1,1]_{\alpha}$
- Other subscripts do not occur in q_{0} if numbers are long enough and correctly folded

Adding with NFAs

Example Start in initial state q_{0}, assume automaton with $c_{k}=0$. First input character is $[0,1]_{\alpha}$.
$1 \quad b_{k-3} \ldots \quad b_{2} b_{1} \quad b_{0} \mid \quad 1 b_{k-3} \ldots b_{1} b_{0}$

$1 \quad a_{k-2} \quad a_{k-3} \quad a_{k-4} \ldots \quad a_{1} a_{0} \mid \quad 1 \quad a_{k-2} \quad a_{k-3} \ldots a_{1} a_{0}$ | $c_{2 k}$ | $c_{2 k-1}$ | $c_{2 k-2}$ | $c_{2 k-3}$ | $c_{2 k-4} \ldots$ | c_{k+1} | $\mathbf{0}$ | c_{k-1} | c_{k-2} | $c_{k-3} \ldots$ | c_{1} | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1_{\zeta} x_{2 k-1}$ | $x_{2 k-2}$ | $x_{2 k-3_{\gamma}}$ | $x_{2 k-4_{\beta}} \ldots$ | $x_{k+1_{\alpha}}$ | $0_{\alpha} \mid$ | x_{k-1} | x_{k-2} | $x_{k-3_{\gamma}} \ldots$ | x_{1} | 1_{α} | |

upper half $\delta\left(q_{0},[0,1]\right)=\underbrace{}_{\text {lower half }}$

$$
\delta\left(q_{0},[0,1]_{\alpha}\right)=\{(0,1,0,1),
$$

b_{0}	b_{1}	a_{0}	c_{l}	c_{h}
0	0	\times	x	x
0	1	1	0	1
1	0	0	0	0
1	1	x	x	x

$(1,0,0,0)\}$

- Similarly for $[0,0]_{\alpha},[1,0]_{\alpha},[1,1]_{\alpha}$
- Other subscripts do not occur in q_{0} if numbers are long enough and correctly folded

Adding with NFAs

$$
\begin{aligned}
& 1 \quad b_{k-3} \ldots \quad b_{2} b_{1} \quad b_{0} \mid \quad 1 \quad b_{k-3} \ldots b_{1} b_{0} \\
& 1 \quad a_{k-2} \quad a_{k-3} \quad a_{k-4} \ldots \quad a_{1} \quad a_{0} \mid \quad 1 \quad a_{k-2} \quad a_{k-3} \ldots a_{1} a_{0} \\
& \begin{array}{lllllllllllll}
c_{2 k} & c_{2 k-1} & c_{2 k-2} & c_{2 k-3} & c_{2 k-4} \ldots & c_{k+1} & \mathbf{0} & c_{k-1} & c_{k-2} & c_{k-3} & \ldots & c_{1} & 0 \\
\hline 1_{\zeta} x_{2 k-1} x_{\epsilon} x_{2 k-2}{ }_{\delta} & x_{2 k-3} & x_{2 k-4} \ldots & x_{k+1} & x_{k_{\alpha}} \mid x_{k-1} & x_{k-2} & x_{k-3} \ldots & x_{1 \alpha} & x_{0_{\alpha}}
\end{array} \\
& \text { upper half }
\end{aligned}
$$

- Rules for other states and inputs can be derived in a similar way, e.g.
- When reading $[u, v]_{\epsilon}$ we have to use the b_{0} from the state tuple for the lower bits and in the upper half of the bits there is no b.
- We can only choose 1 for a.
- We have to make sure that we get $\mathbf{c}_{\mathbf{k}}$ as a carry for the lower bits.

Putting together the automata

- Similar techniques are used to construct automata for remaining cases of main lemma (also for even-length numbers)
- The actual verification is done by the ULTIMATE framework developed at the chair for software engineering (University of Freiburg)
- Actual verification took less than one minute

Discussion of method

- Automata theory can deliver proofs where pure mathematicians did not suceed so far
- especially good for computational proofs (e.g. case distinctions with many cases like in our example)
- Critics: Computer does actual proving.
- Hard to see and verify if working correctly
- Hard to get intuition why proof works
- "Mechanical" proof better than no proof?
- Sometimes "elegant" proof is found some time after computational proof

Bibliography

E. Madhusudan, D. Nowotka, A. Rajasekaran, J. Shallit Lagrange's Theorem for Binary Squares ArXiv e-prints https://arxiv.org/abs/1710.04247

